Capsaicin-sensitive sensory neurons are stimulated by noxious stimuli, and may be activated in endotoxaemia. The present study investigated the acute and chronic effects of lipopolysaccharide upon the efferent function of these nerves. Conscious rats received infusion (i.v.) of lipopolysaccharide (150 microg kg(-1) h(-1)) or saline for 2 or 24 h. Following infusion, animals were killed and the mesenteric arterial bed isolated and perfused with Krebs' solution. Electrical field stimulation of capsaicin-sensitive sensory nerves was investigated. Postjunctional mechanisms of sensory neurotransmission were examined using calcitonin gene-related peptide, and endothelial and smooth muscle function assessed using acetylcholine and sodium nitroprusside, respectively. All preparations exhibited dose dependency to the agonists, and frequency dependency to electrical field stimulation. No significant differences were observed between the four groups (2-h saline, 24-h saline, 2-h lipopolysaccharide and 24-h lipopolysaccharide) with regard to responses to electrical field stimulation, acetylcholine, sodium nitroprusside or calcitonin gene-related peptide. Thus, the efferent function of capsaicin-sensitive sensory nerves is unaltered in the isolated mesenteric arterial bed prepared ex vivo from rats receiving lipopolysaccharide, either acutely (2 h) or chronically (24 h).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1566-0702(03)00019-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!