Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of passive sampler systems is reviewed and discussed. These devices are able to determine both spatial and temporal differences in canopy exposure, as is demonstrated by their use in extensive monitoring of air-pollution exposure in forest health plots. Categorising forest health monitoring plots according to air-pollution exposure permits cause-effect analysis of certain forest health responses. In addition, passive sampling may identify areas affected by interaction between different gaseous pollutants. Passive samplers at the stand level can be used to resolve vertical profiles of ozone within the stand, and edge effects, which are important in exposure of understorey and ground flora. Recent case studies using passive samplers to determine forest exposure to gaseous pollutants indicate a potential for the development of spatial models on regional-, landscape-, and stand-level scales and the verification of atmospheric transport models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0269-7491(03)00243-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!