We have applied spectroscopic ellipsometry to sensitive detection of specific protein-protein interactions on SiO2/Si substrates. First, the change of ellipticity of the reflected polarized light (600-1100 nm) was correlated with the thickness of the protein layer immobilized on SiO2/Si surfaces by measuring monomeric (myoglobin) and homotetrameric (hemoglobin) proteins with a similar monomer size. Protein-protein interactions were then measured with the antigen/antibody and cell-surface receptor/ligand systems; in each system either of the two proteins was bound to SiO2/Si substrates. Consequently, significant ellipticity changes were observed only for the cases where the interactions were specific. A specific antibody binding was also detectable with an antigen displayed on the surface of bacteriophage particles. These results show the usefulness of spectroscopic ellipsometry for sensitive detection of protein-protein interactions and its applicability to a detection method for the protein-based biochips to be developed in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-2697(03)00422-6DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
16
spectroscopic ellipsometry
12
detection protein-protein
8
interactions sio2/si
8
sio2/si surfaces
8
ellipsometry sensitive
8
sensitive detection
8
sio2/si substrates
8
interactions
5
detection
4

Similar Publications

Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning.

Cell Host Microbe

January 2025

Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:

Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.

View Article and Find Full Text PDF

Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis.

Curr Res Transl Med

January 2025

Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets.

Methods: RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Protein binding and folding through an evolutionary lens.

Curr Opin Struct Biol

January 2025

Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden. Electronic address:

Protein-protein associations are often mediated by an intrinsically disordered protein region interacting with a folded domain in a coupled binding and folding reaction. Classic physical organic chemistry approaches together with structural biology have shed light on mechanistic aspects of such reactions. Further insight into general principles may be obtained by interpreting the results through an evolutionary lens.

View Article and Find Full Text PDF

The evolution of the Amber additive protein force field: History, current status, and future.

J Chem Phys

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges.

View Article and Find Full Text PDF

Peptide design to control protein-protein interactions.

Chem Soc Rev

January 2025

School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.

Targeting of protein-protein interactions has become of huge interest in every aspect of medicinal and biological sciences. The control of protein interactions selectively offers the opportunity to control biological processes while limiting off target effects. This interest has massively increased with the development of cryo-EM and protein structure prediction with tools such as RosettaFold and AlphaFold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!