The present work was conducted to assess the possible protective effects of zafirlukast against the toxic damage induced by acetic acid in rat colon. Zafirlukast is a potent and selective cysteinyl leukotriene receptor antagonist which is used mainly in the prophylaxis of bronchial asthma. Two doses of zafirlukast were used (40 and 80 mg/kg) dissolved in gum acacia and given either orally or rectally (0.5 ml/kg). Several parameters including, macroscopic score, histopathological and biochemical such as malondialdehyde (MDA), myeloperoxidase (MPO), catalase and reduced glutathione (GSH) levels were measured using standard assay procedures. The study showed that pretreatment with zafirlukast in a dose of 80 mg/kg orally produced a significant decrease in tissue malondialdehyde, myeloperoxidase, and an increase in both reduced glutathione and catalase levels, while there was no significant changes with the rectal route. The 40 mg/kg dose had no significant protective effects when given either orally or rectally. The available data indicate that the inhibition of leukotriene synthesis or action may have a role in inflammatory bowel disease (IBD) as they are considered as important mediators in this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(03)00269-8 | DOI Listing |
J Biomol Struct Dyn
August 2024
Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa.
Despite the existence of some vaccines, SARS-CoV-2 (S-2) infections persist for various reasons relating to vaccine reluctance, rapid mutation rate, and an absence of specific treatments targeted to the infection. Due to their availability, low cost and low toxicity, research into potentially repurposing phytometabolites as therapeutic alternatives has gained attention. Therefore, this study explored the antiviral potential of metabolites of some medicinal plants [, and (Sesame plant)] identified using liquid chromatography-mass spectrometry (LCMS) as possible inhibitory agents against the S-2 main protease (S-2 MP) and RNA-dependent RNA polymerase (RP) using computational approaches.
View Article and Find Full Text PDFMolecules
March 2023
Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
Over the past few years, COVID-19 has caused widespread suffering worldwide. There is great research potential in this domain and it is also necessary. The main objective of this study was to identify potential inhibitors against acid sphingomyelinase (ASM) in order to prevent coronavirus infection.
View Article and Find Full Text PDFMetabolites
October 2022
Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
The spike protein (SP) of SARS-CoV-2 (SC-2) is susceptible to high mutation and has contributed to the multiple waves of COVID-19 being experienced. Hence, targeting the SP remains a logical approach in the development of potent therapeutics against SARS-CoV-2. Here, a computational technique was adopted to identify broad-spectrum plant secondary metabolites with indigenous relevance in the management of respiratory infections against the SPs of the SC-2 wild- type (SC-2WT) and omicron variants.
View Article and Find Full Text PDFMetabolites
August 2022
Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA.
Worldwide, obesity rates have doubled since the 1980s and in the USA alone, almost 40% of adults are obese, which is closely associated with a myriad of metabolic diseases such as type 2 diabetes and arteriosclerosis. Obesity is derived from an imbalance between energy intake and consumption, therefore balancing energy homeostasis is an attractive target for metabolic diseases. One therapeutic approach consists of increasing the number of brown-like adipocytes in the white adipose tissue (WAT).
View Article and Find Full Text PDFAAPS PharmSciTech
May 2022
Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Pune, 411041, Maharashtra, India.
This study investigated the application of bio-ionic liquids (ILs) prepared from choline as cation and amino acid as anion for solubility enhancement of poorly water-soluble drug, Zafirlukast (ZFL). Herein, the solubility of ZFL in water and mixtures of water and ILs was assessed using UV spectroscopy at two temperature points 25°C and 37°C with increasing concentrations of IL. ZFL solubility was found to improve linearly with increasing concentration of [Ch][Pro] in water, representing 35- to 37-fold improvement in ZFL solubility at maximum concentration of [Ch][Pro] (1% w/v) compared to when only pure water was present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!