The polarization-dependent transmission of light through an electrically controllable in-line-type polarizer that is made from polymer-dispersed liquid-crystal spliced optical fibers is discussed experimentally and theoretically. This in-line-type optical splicing method has the advantage of low transmission loss when it is applied in optical fiber communication systems. An anomalous diffraction approach is used to compute the scattering cross section of polymer-dispersed liquid-crystal droplets. The experimental results are supported by a theoretical analysis. This device can be employed in electrically controllable in-line-type polarizers and has the potential to yield electrically controllable polarization-dependent loss compensators.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.42.005033DOI Listing

Publication Analysis

Top Keywords

electrically controllable
16
controllable in-line-type
12
polymer-dispersed liquid-crystal
12
in-line-type polarizer
8
polarizer polymer-dispersed
8
liquid-crystal spliced
8
spliced optical
8
optical fibers
8
electrically
4
in-line-type
4

Similar Publications

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

The proliferation of the Internet of Things (IoT) has worsened the challenge of maintaining data and user privacy. IoT end devices, often deployed in unsupervised environments and connected to open networks, are susceptible to physical tampering and various other security attacks. Thus, robust, efficient authentication and key agreement (AKA) protocols are essential to protect data privacy during exchanges between end devices and servers.

View Article and Find Full Text PDF

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!