Virulence of the intracellular pathogen Brucella for humans is mainly associated with its lipopolysaccharide (LPS) phenotype, with smooth LPS phenotypes generally being virulent and rough ones not. The reason for this association is not quite understood. We now demonstrate by flow cytometry, electron microscopy, and ELISA that human peripheral blood monocytes interact both quantitatively and qualitatively different with smooth and rough Brucella organisms in vitro. We confirm that considerably higher numbers of rough than smooth brucellae attach to and enter the monocytes in nonopsonic conditions; but only smooth brucellae replicate in the host cells. We show for the first time that rough brucellae induce higher amounts than smooth brucellae of several CXC (GRO-alpha, IL-8) and CC (MIP-1alpha, MIP-1beta, MCP-1, RANTES) chemokines, as well as pro- (IL-6, TNF-alpha) and anti-inflammatory (IL-10) cytokines released by challenged monocytes. Upon uptake, phagosomes containing rough brucellae develop selective fusion competence to form spacious communal compartments, whereas phagosomes containing smooth brucellae are nonfusiogenic. Collectively, our data suggest that rough brucellae attract and infect monocytes more effectively than smooth brucellae, but only smooth LPS phenotypes establish a specific host cell compartment permitting successful parasitism. These novel findings link the LPS phenotype of Brucella and its virulence for humans at the level of the infected host cells. Whether this is due to a direct effect of the LPS molecules or to upstream bacterial mechanisms remains to be established.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0103015 | DOI Listing |
Pathogens
January 2025
Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', National Reference Center for Brucellosis, 64100 Teramo, Italy.
Rose Bengal antigen and smooth lipopolysaccharide (s-LPS) were produced from a field strain of ("homologous" antigens) and from the reference strain S99 ("heterologous" antigens); they are currently used for the diagnosis of brucellosis in cattle, water buffaloes, sheep, goats, and pigs, as recommended in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (WOAH). "Homologous" and "heterologous" antigens were used in a rapid serum agglutination test (Rose Bengal test, RBT) and a competitive ELISA assay (c-ELISA) to test a panel of sera, blood, and other body fluids (cerebrospinal fluid, pericardial fluid, tracheal fluid, and aqueous humor) collected from 71 individuals belonging to five cetacean species (; ; ; ; and ), which were found stranded on the Italian coastline. Six animals were positive for spp.
View Article and Find Full Text PDFVet Microbiol
January 2025
Instituto de Patobiología - Instituto de Patobiología Veterinaria (IP-IPVET), UEDD INTA-Conicet, Nicolás Repetto y de Los Reseros s/n (B1686), Hurlingham, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290 (C1425FQB), CABA, Argentina. Electronic address:
Enzyme-linked immunosorbent assay (ELISA) is a widely used and effective tool for detection of anti-Brucella antibodies in serum, easy to perform with high sensitivity and specificity. In this study, we validated an in-house indirect ELISA using B. melitensis whole cell lysate as antigen (Bm-WCL iELISA) for the serodiagnosis of caprine brucellosis and evaluated the use of BSL-2 B.
View Article and Find Full Text PDFPLoS One
December 2024
College Central Laboratory, COVS, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
Brucellosis and Q-fever are two highly contagious bacterial diseases with significant zoonotic potential and economic threats, yet they often remain underreported and neglected in low- and middle-income countries. The present study aimed to determine the seroprevalence of Brucellosis and Q-fever in water buffaloes in the Haryana state of India to implement effective preventive measures for disease control. The study covered all 22 districts of Haryana and involved 400 serum samples collected from female buffaloes belonging to two age groups and three distinct agro-climatic zones.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
January 2025
Department of Microbiology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey. Electronic address:
Sci Rep
October 2024
School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Brucellosis, caused by Gram-negative Brucella, spreads in human and animal populations through contact with infected animals and products. Developing a rapid and sensitive detection technology for pathogen is crucial to reduce the risk of this disease transmitting between animal populations and to humans. We produced a monoclonal antibody LPS-6B5, which shows high affinity to LPS and limited cross-reactivity with other bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!