Purpose: The suitability of neuroblastoma patients for therapy using radiolabeled meta-iodobenzylguanidine (MIBG) is determined by scintigraphy after the administration of a tracer dose of radioiodinated MIBG whose uptake is dependent upon the cellular expression of the noradrenaline transporter (NAT). As a possible alternative to gamma camera imaging, we developed a novel molecular assay of NAT expression. mRNA extracted from neuroblastoma biopsy samples, obtained retrospectively, was reverse transcribed, and NAT-specific cDNA was quantified by real-time PCR, referenced against the expression of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase. EXPERMENTAL DESIGN: Tumor specimens from 54 neuroblastoma patients were analyzed using real-time PCR, and NAT expression was compared with the corresponding diagnostic scintigrams.
Results: Forty-eight of 54 (89%) of tumors showed MIBG uptake by scintigraphy. NAT expression was found to be significantly associated with MIBG uptake (P < 0.0001, Fisher's exact test). None of the samples from the six tumors that failed to concentrate MIBG expressed detectable levels of the NAT (specificity = 1.0). However, of the 48 MIBG uptake-positive tumors, only 43 (90%) expressed NAT (sensitivity = 0.9). The real-time PCR test has a positive predictive value of 1.0 but a negative predictive value of 0.55.
Conclusions: The results indicate that whereas this method has substantial ability to predict the capacity of neuroblastoma tumors to accumulate MIBG, confirmation is required in prospective studies to determine more accurately the predictive strength of the test and its role in the management of patients with neuroblastoma.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!