Both the number and the activity of osteoclasts are critical for maintaining normal bone turnover. The number is determined by rates of cell differentiation and death. Fas-mediated apoptosis is a dominant mechanism for apoptosis. Here, we show the presence of the Fas receptor on mouse, human, avian, and cultured RAW264.7 (murine) derived osteoclasts and the up-regulation of its expression during mouse osteoclast differentiation. Additionally, Fas is a fully functional death receptor in osteoclasts, and its signaling pathway is consistent with classical Fas signaling in other cell systems, involving mitochondrial release of cytochrome c and activation of caspases 3 and 9. This demonstration of Fas-mediated apoptosis in mature osteoclasts provides a new and potent mechanism for the regulation of osteoclast life span. The in vivo significance of Fas-mediated apoptosis in bone (osteoclasts) was demonstrated in aged Lpr and Gld mice, which have a dysfunctional immune system. Lpr mice, which have a defect in the Fas gene, have decreased bone mineral density, bone volume, trabecular thickness, and increased osteoclast number. Gld mice, which have a Fas ligand mutation, have a slight yet insignificant decrease in bone mineral density, but a highly significant increase in osteoclast number. Taken together, these data demonstrate that the Fas/Fas ligand system is important in the regulation of bone turnover and may represent a critical link between the immune system and bone remodeling in development and in various diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2003-0296 | DOI Listing |
J Biol Chem
November 2024
Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA. Electronic address:
The TNF-TNFR1 signaling pathway plays a pivotal role in regulating the balance between cell survival and cell death. Upon binding to TNF, plasma membrane-localized TNFR1 initiates survival signaling, whereas TNFR1 internalization promotes caspase-mediated apoptosis. We previously reported that the α2-6 sialylation of TNFR1 by the tumor-associated sialyltransferase ST6GAL1 diverts signaling toward survival by inhibiting TNFR1 internalization.
View Article and Find Full Text PDFiScience
November 2024
Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Biomolecules
September 2024
Metabolic Control and Aging-Jiangxi Key Laboratory of Aging and Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China.
The regenerative capacity of muscle, which primarily relies on anabolic processes, diminishes with age, thereby reducing the effectiveness of therapeutic interventions aimed at treating age-related muscle atrophy. In this study, we observed a decline in the expression of methionine adenosine transferase 2A (MAT2A), which synthesizes S-adenosylmethionine (SAM), in the muscle tissues of both aged humans and mice. Considering MAT2A's critical role in anabolism, we hypothesized that its reduced expression contributes to the impaired regenerative capacity of aging skeletal muscle.
View Article and Find Full Text PDFNeurol Int
August 2024
Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA.
Cell Rep
September 2024
Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA. Electronic address:
Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!