Mastoparan, a tetradecapeptide from wasp venom, stimulates insulin secretion from the islet beta-cells, presumably via activation of trimeric G proteins. Herein, we used Clostridial toxins, which selectively modify and inactivate the Rho subfamily of G proteins, to examine whether mastoparan-induced insulin secretion also involves activation of these signaling proteins. Mastoparan, but not mastoparan 17 (an inactive analog of mastoparan), significantly stimulated insulin secretion from betaTC3 and INS-1 cells. Preincubation of betaTC3 cells with either Clostridium difficille toxin B, which inactivates Rho, Cdc42, and Rac, or Clostridium sordellii toxin, which inactivates Ras, Rap, and Rac, markedly attenuated the mastoparan-induced insulin secretion, implicating Rac in this phenomenon. Mastoparan-stimulated insulin secretion was resistant to GGTI-2147, a specific inhibitor of geranylgeranylation of Rho G proteins (e.g. Rac), suggesting that mastoparan induces direct activation of Rac via GTP/GDP exchange. This was confirmed by a pull-down assay that quantifies the binding of activated (i.e. GTP-bound) Rac to p21-activated kinase. However, glucose-induced insulin secretion from these cells was abolished by toxin B or GGTI-2147, suggesting that the geranylgeranylation step is critical for glucose-stimulated secretion. Mastoparan significantly increased the translocation of cytosolic Rac and Cdc42 to the membrane fraction. Confocal light microscopy revealed a substantial degree of colocalization of Rac (and, to a lesser degree, Cdc42) with insulin in beta-cells exposed to mastoparan. Further, stable expression of a dominant negative (N17Rac) form of Rac into INS-1 cells resulted in a significant reduction in mastoparan-stimulated insulin secretion from these cells. Taken together, our findings implicate Rho G proteins, specifically Rac, in mastoparan-induced insulin release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2003-0106 | DOI Listing |
Mol Genet Metab Rep
March 2025
Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India.
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
Obesity is one of the major global health concerns of the 21st century, associated with many comorbidities such as type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated steatotic liver disease, and early and aggressive atherosclerotic cardiovascular disease, which is the leading cause of death worldwide. Bile acids (BAs) and incretins are gut hormones involved in digestion and absorption of fatty acids, and insulin secretion, respectively. In recent years BAs and incretins are increasingly recognized as key signaling molecules, which target multiple tissues and organs, beyond the gastro-intestinal system.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.
View Article and Find Full Text PDFUnlabelled: Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!