The center for circadian rhythms in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus, composed of single cell circadian oscillators driven by a transcriptional/translational feedback loop where clock proteins drive clock gene expression. These genes are expressed in peripheral tissues and several brain areas outside the SCN. It is likely that some peripheral oscillators are synchronized by the SCN. The pineal hormone melatonin plays an important role in the entrainment of circadian rhythms through feedback to the SCN. Melatonin also plays a role in reproduction, including direct effects on GnRH-secreting GT1-7 neurons. The intrinsic rhythmicity of GnRH neurons suggests that these neurons may express the components of the circadian oscillator. Using the GT1-7 cell line, we demonstrate expression of the circadian rhythm genes, clock, BMAL1,timeless (tim), period1,period2, cryptochrome1, andcryptochrome2. Furthermore, semiquantitative RT-PCR demonstrates that BMAL1, period1, andperiod2 as well as GnRH mRNAs are expressed with a circadian-like rhythm after synchronization over 54 h. With available antibodies, we demonstrated CLOCK, BMAL1, and PERIOD1 protein expression in these cells, with BMAL1 protein levels showing a rhythmic expression pattern. In addition, receptors for melatonin, mt1 and MT2, also show a circadian expression pattern in the GT1-7 cells, and their expression is down-regulated by melatonin treatment. These findings suggest that the components of the clock machinery in mammals may play a role in GnRH neuronal function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2003-0802 | DOI Listing |
Handb Clin Neurol
January 2025
Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
Obstructive sleep apnea syndrome (OSAS) significantly affects the sleep-wake circadian rhythm through intermittent hypoxia and chronic sleep fragmentation. OSAS patients often experience excessive daytime sleepiness, frequent awakenings, and sleep fragmentation, leading to a disrupted circadian rhythm and altered sleep-wake cycle. These disruptions may exacerbate OSAS symptoms and contribute to neurodegenerative processes, particularly through the modulation of clock gene expression such as CLOCK, BMAL1, and PER.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Department of Physiology, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. Electronic address:
Cardiologists have analyzed daily patterns in the incidence of sudden cardiac death to identify environmental, behavioral, and physiological factors that trigger fatal arrhythmias. Recent studies have indicated an overall increase in sudden cardiac arrest during daytime hours when the frequency of arrhythmogenic triggers is highest. The risk of fatal arrhythmias arises from the interaction between these triggers-such as elevated sympathetic signaling, catecholamine levels, heart rate, afterload, and platelet aggregation-and the heart's susceptibility (myocardial substrate) to them.
View Article and Find Full Text PDFPsychiatr Pol
October 2024
Uniwersytet Medyczny w Poznaniu.
In 2024, we observe the fortieth anniversary of the publication, where, for the first time, the term of Seasonal Affective Disorder (SAD) was used. Presently, SAD is regarded as a special category of mood disorder. In the American Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V), the seasonality makes a specifier, "with seasonal pattern", both for recurrent depression or Major Depressive Disorder (MDD), and for Bipolar Disorder (BD).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!