Mendelian hypertension with brachydactyly as a molecular genetic lesson in regulatory physiology.

Am J Physiol Regul Integr Comp Physiol

The Clinic Research Center of the franz Volhard Clinic, University of Berlin, 13125 Berlin, Germany.

Published: October 2003

Mendelian forms of hypertension have delivered a treasure trove of novel genes. To date, the molecular mechanisms of five such syndromes have been largely clarified, including glucocorticoid-remediable aldosteronism, Liddle's syndrome, apparent mineralocorticoid excess, an activating mutation of the mineralocorticoid receptor, and pseudohypoaldosteronism type 2. Each of these conditions features salt sensitivity with increased sodium and volume reabsorption by the kidney and low plasma renin activity. None of the gene loci for these syndromes has been convincingly linked to hypertension in the general population. We are investigating kindreds who have autosomal-dominant hypertension and brachydactyly. Affected persons invariably have both anomalies. The hypertension is severe and results in death at about age 50 years from stroke. The condition resembles essential hypertension, because renin, aldosterone, and norepinephrine responses are normal and no salt sensitivity is present. The response to antihypertensive drugs is general. Another feature is diminished baroreflex sensitivity with markedly impaired blood pressure buffering. Furthermore, the ventrolateral medulla may be compromised in these patients, because neurovascular anomalies are a regular finding. We mapped the gene(s) for this disease to chromosome 12p and narrowed the chromosomal region by studying more affected families. Interestingly, the same locus was recently mapped in Chinese families with essential hypertension. Our 3-centimorgan region contains genes encoding a phosphodiesterase, an ATP-dependent potassium channel, and its regulator the sulfonylurea receptor 2. Screening of the coding regions revealed that none of these candidate genes harbor obvious mutations; however, other genetic mechanisms may nevertheless compromise their function. Our study underscores the importance of regulatory physiology to the understanding of a complex genetic syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00174.2003DOI Listing

Publication Analysis

Top Keywords

hypertension brachydactyly
8
regulatory physiology
8
salt sensitivity
8
essential hypertension
8
hypertension
6
mendelian hypertension
4
brachydactyly molecular
4
molecular genetic
4
genetic lesson
4
lesson regulatory
4

Similar Publications

Hypertension is a growing concern worldwide, with increasing prevalence rates in both children and adults. Most cases of hypertension are multifactorial, with various genetic, environmental, socioeconomic, and lifestyle influences. However, monogenic hypertension, a blanket term for a group of rare of hypertensive disorders, is caused by single-gene mutations that are typically inherited in an autosomal dominant fashion, and ultimately disrupt normal blood pressure regulation in the kidney or adrenal gland.

View Article and Find Full Text PDF

Hypertension requires increased systemic vascular resistance. Thus far, Mendelian hypertension-related genes are related to salt retention, an indirect regulatory effect. With the identification of mutated, overactive, PDE3A (phosphodiesterase 3A), we have uncovered a more direct vasoconstrictive mechanism.

View Article and Find Full Text PDF

We report a 40-year-old African American female with a novel variant in exon 8 of DNA methyltransferase 3 alpha (DNMT3A), (NM_022552.4: c.905G>C, p.

View Article and Find Full Text PDF
Article Synopsis
  • Recent mutations in the phosphodiesterase 3A (PDE3A) gene have been linked to hypertension and brachydactyly syndrome (HTNB).
  • A 20-year-old female, previously undiagnosed at age 6, was finally diagnosed with HTNB due to the new understanding of the PDE3A gene's involvement.
  • This case highlights the importance of genetic insights in accurately diagnosing complex conditions like HTNB.
View Article and Find Full Text PDF

The authors describe the case of a 16-year-old male who was incidentally found to have a blood pressure of 200/? mmHg 6 months previously due to blurred vision and was diagnosed with "high risk of hypertension grade 3, renal insufficiency, hypertensive encephalopathy, hypertensive heart disease, and fundus hemorrhage" after relevant examinations were performed. His blood pressure fluctuated around 120/90 mmHg after beginning antihypertensive treatment. While the diagnostic work-up of his hypertension was inconclusive, he had severe hypertension with brachydactyly type E and short stature on physical examination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!