Transduction and adaptation in sensory hair cells of the mammalian vestibular system.

Gravit Space Biol Bull

Departments of Neuroscience and Otolaryngology, University of Virginia, Charlottesville, VA, USA.

Published: June 2003

The human vestibular apparatus detects head movements and gravitational stimuli which impinge upon the mechanosensory hair cells of the inner ear. The hair cells, in turn, transduce these stimuli into electrical signals which are transmitted to the brain. These sensory cells are exquisitely responsive, signaling deflections of their mechanosensitive organelles as small as 1-2 nanometers. Remarkably, they are able to preserve this level of sensitivity even when confronted with large tonic stimuli, such as gravity. To accomplish this feat hair cells have devised a novel adaptation process that repositions the mechanotransduction apparatus on a millisecond time scale to allow high sensitivity over a broad operating range. Mechanotransduction in hair cells occurs via a direct gating mechanism in which hair bundle deflection focuses tension onto membrane-bound, cation-selective ion channels located near the tips of the hair bundle. Increased tension favors an open conformation of the channel and allows calcium to enter the cell. Elevated intracellular calcium promotes adaptation which has been hypothesized to result from the activity of a cluster of molecular motors that continually adjust the tension in the transduction apparatus. Although the transduction channel itself remains elusive, myosin Ic has recently been identified as a molecular component of the "adaptation" motor.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hair cells
20
hair bundle
8
hair
7
cells
6
transduction adaptation
4
adaptation sensory
4
sensory hair
4
cells mammalian
4
mammalian vestibular
4
vestibular system
4

Similar Publications

Decorin-mediated dermal papilla cell-derived exosomes regulate hair follicle growth and development through miR-129-2-3p/SMAD3/TGF-β axis.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Decorin (DCN) is a member of the small leucine-rich proteoglycan family within the extracellular matrix, playing a role in the growth and development of hair follicle (HF). Exosomes serve as significant mediators of intercellular communication and are involved in the cyclic regeneration of HF. Exosomes derived from dermal papilla cells (DPC-Exos) are essential for the cycling and regrowth of HF.

View Article and Find Full Text PDF
Article Synopsis
  • Skin and hair development involves complex gene regulation to ensure proper growth and maintenance.
  • Elf5 is identified as a key transcription factor that influences keratinocyte proliferation and differentiation in skin and hair follicles.
  • Research on Elf5 could pave the way for new treatments in stem cell research, regenerative medicine, and age-related skin issues.
View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive.

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!