Assembly of the bacterial flagellum and type III secretion in pathogenic bacteria require cytosolic export chaperones that interact with mobile components to facilitate their secretion. Although their amino acid sequences are not conserved, the structures of several type III secretion chaperones revealed striking similarities between their folds and modes of substrate recognition. Here, we report the first crystallographic structure of a flagellar export chaperone, Aquifex aeolicus FliS. FliS adopts a novel fold that is clearly distinct from those of the type III secretion chaperones, indicating that they do not share a common evolutionary origin. However, the structure of FliS in complex with a fragment of FliC (flagellin) reveals that, like the type III secretion chaperones, flagellar export chaperones bind their target proteins in extended conformation and suggests that this mode of recognition may be widely used in bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nsb982 | DOI Listing |
Calcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.
Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse and memory failure, and severe cognitive impairment. Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and has been reported to alleviate memory impairment in AD. Irisin, an exercise-induced hormone, is secreted following proteolytic cleavage of fibronectin type-III-domain-containing 5 (FNDC5).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: In Alzheimer's disease (AD), specific brain regions become vulnerable to pathology while others remain resilient. New methods of imaging such as highly multiplexed immunofluorescence (MxIF) provide an abundance of spatial information, while analytical techniques like machine learning (ML) can address questions of cellular contributors to this regional vulnerability.
Method: We performed MxIF staining for 26 markers and compared postmortem human samples from an AD-susceptible brain area, the prefrontal cortex (PFC, Brodmann's areas 9, 10 or 46) to an AD-resilient brain area, the primary visual cortex (V1, area 17).
Alzheimers Dement
December 2024
Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!