The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway.

J Biol Chem

Prostate Research Group, School of Surgical and Reproductive Sciences, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.

Published: November 2003

The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, functions as a ligand-dependent transcription factor that regulates genes involved in cell proliferation and differentiation. Using a C-terminal region of the human AR in a yeast two-hybrid screen, we have identified RACK1 (receptor for activated C kinase-1) as an AR-interacting protein. In this report we found that RACK1, which was previously shown to be a protein kinase C (PKC)-anchoring protein that determines the localization of activated PKCbetaII isoform, facilitates ligand-independent AR nuclear translocation upon PKC activation by indolactam V. We also observed RACK1 to suppress ligand-dependent and -independent AR transactivation through PKC activation. In chromatin immunoprecipitation assays, we demonstrate a decrease in AR recruitment to the AR-responsive prostate-specific antigen (PSA) promoter following stimulation of PKC. Furthermore, prolonged exposure to indolactam V, a PKC activator, caused a reduction in PSA mRNA expression in prostate cancer LNCaP cells. Finally, we found PKC activation to have a repressive effect on AR and PSA protein expression in androgen-treated LNCaP cells. Our data suggest that RACK1 may function as a scaffold for the association and modification of AR by PKC enabling translocation of AR to the nucleus but rendering AR unable to activate transcription of its target genes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M306219200DOI Listing

Publication Analysis

Top Keywords

pkc activation
12
androgen receptor
8
protein kinase
8
lncap cells
8
pkc
6
rack1
5
protein
5
scaffolding protein
4
protein rack1
4
rack1 interacts
4

Similar Publications

PKCα regulates the secretion of PDL1-carrying small extracellular vesicles in a p53-dependent manner.

Cell Death Dis

January 2025

School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.

Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

Background And Aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.

Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.

View Article and Find Full Text PDF

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!