There has been an increase in data suggesting that besides air, hospital water is a potential source of transmission of filamentous fungi, and in particular Aspergillus fumigatus. Molecular characterization of environmental and clinical A. fumigatus isolates, collected prospectively during an 18-month period, was performed to establish if waterborne fungi play a role in the pathogenesis of invasive aspergillosis. Isolates recovered from water (n = 54) and air (n = 21) at various locations inside and outside the hospital and from 15 patients (n = 21) with proven, probable, or possible invasive aspergillosis were genotyped by amplified fragment length polymorphism analysis. Based on genomic fingerprints, the environmental A. fumigatus isolates could be grouped into two major clusters primarily containing isolates recovered from either air or water. The genotypic relatedness between clinical and environmental isolates suggests that patients with invasive aspergillosis can be infected by strains originating from water or from air. In addition, 12 clusters with genetically indistinguishable or highly related strains were differentiated, each containing two to three isolates. In two clusters, clinical isolates recovered from patients matched those recovered from water sources, while in another cluster the clinical isolate was indistinguishable from one cultured from air. This observation might open new perspectives in the development of infection control measures to prevent invasive aspergillosis in high-risk patients. The genetic variability found between airborne and waterborne A. fumigatus strains might prove to be a powerful tool in understanding the transmission of invasive aspergillosis and in outbreak control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC193792PMC
http://dx.doi.org/10.1128/JCM.41.9.4101-4106.2003DOI Listing

Publication Analysis

Top Keywords

invasive aspergillosis
20
isolates recovered
16
fumigatus isolates
12
recovered water
12
water air
12
aspergillus fumigatus
8
isolates
8
clusters genetically
8
water
6
air
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!