In neurons, hypoxia activates intracellular death-related pathways, yet the antiapoptotic mechanisms triggered by hypoxia remain unclear. In RN46A neuronal cells, minimum media growth conditions induced cell death as early as 12 h after the cells were placed in these conditions (i.e., after removal of B-27 supplement). However, apoptosis occurred in hypoxia (1% O2) only after 48 h, and in fact hypoxia reduced the apoptosis associated with trophic factor withdrawal. Furthermore, hypoxia induced time-dependent increases in expression of platelet-derived growth factor (PDGF) B mRNA and protein, as well as PDGF-beta receptor phosphorylation. Although exogenous PDGF-BB induced only transient Akt activation, hypoxia triggered persistent activation of Akt for up to 24 h. Inhibition of phosphatidylinositol 3-kinase (PI3K) or of PDGF-beta receptor phosphorylation abrogated both hypoxia-induced and exogenous PDGF-BB-induced Akt phosphorylation, and it completely abolished hypoxia-induced protection from media supplement deprivation, which suggests that the long-lasting activation of Akt during hypoxia and the prosurvival induction were due to endogenously generated PDGF-BB. Furthermore, these inhibitors decreased hypoxia-inducible factor 1alpha (HIF-1alpha) DNA binding, which suggests that the PDGF/PDGF-beta receptor/Akt pathway induces downstream HIF-1alpha gene transcription. We conclude that in RN46A neuronal cells, hypoxia activates an autocrine-paracrine antiapoptotic mechanism that involves up-regulation of PDGF-B and PDGF-beta receptor-dependent activation of the PI3K/Akt signaling pathway to induce downstream transcription of survival genes.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.02-1111fjeDOI Listing

Publication Analysis

Top Keywords

rn46a neuronal
12
neuronal cells
12
hypoxia
9
platelet-derived growth
8
growth factor
8
hypoxia activates
8
pdgf-beta receptor
8
receptor phosphorylation
8
activation akt
8
hypoxia induces
4

Similar Publications

Depression is among the most common neuropsychiatric comorbidities in Alzheimer's disease (AD) and other Tauopathies. Apart from its anti-depressive and anxiolytic effects, selective serotonin reuptake inhibitor (SSRI) treatment also offers intracellular modifications that may help to improve neurogenesis, reduce amyloid burden & Tau pathologies, and neuroinflammation in AD. Despite its multifaceted impact in the brain, the exact physiological and molecular mechanism by which SSRIs such as Citalopram improve neurogenesis and synaptogenesis in dementia is poorly understood.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor protects serotonergic neurons against 3,4-methylenedioxymethamphetamine ("Ecstasy") induced cytoskeletal damage.

J Neural Transm (Vienna)

June 2022

Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland.

3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") use has been linked to persistent alterations of the brain serotonergic (5-HT) system in animal and human studies, but the molecular underpinnings are still unclear. Cytoskeletal structures such as neurofilament light chain (NfL) are promising markers of drug-induced brain toxicity and may be involved in MDMA neurotoxicity. The brain-derived neurotrophic factor (BDNF) promotes the growth and sprouting of 5-HT neurons and its differential response to MDMA administration was suggested to mediate dose- and region-dependent 5-HT damage by MDMA.

View Article and Find Full Text PDF

Serotonin, an important signaling molecule in humans, has an unexpectedly high lipid membrane affinity. The significance of this finding has evoked considerable speculation. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, providing an activity pathway completely independent of serotonin receptors.

View Article and Find Full Text PDF

Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene.

View Article and Find Full Text PDF

Gene expression effects of lithium and valproic acid in a serotonergic cell line.

Physiol Genomics

February 2019

Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch , New Zealand.

Valproic acid (VPA) and lithium are widely used in the treatment of bipolar disorder. However, the underlying mechanism of action of these drugs is not clearly understood. We used RNA-Seq analysis to examine the global profile of gene expression in a rat serotonergic cell line (RN46A) after exposure to these two mood stabilizer drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!