Lung transplantation is effective for many diseases that are unresponsive to other therapy. However, long-term survival of recipients is limited by the development of bronchiolitis obliterans syndrome. Acute rejection is a major risk factor for bronchiolitis obliterans syndrome, but noninvasive biomarkers have not been identified. To address this deficiency, gene expression microarrays were performed using bronchoalveolar lavage cells of lung transplant recipients with acute rejection (n = 7) and with no rejection (n = 27). The cell and differential counts were similar. Signal values for genes between groups were compared using t tests. One hundred thirty-five genes were upregulated in the acute-rejection group, including genes involved in acute rejection, immune response genes with an unknown role in rejection, genes not known to have a role in rejection, and genes of unknown function. Two-dimensional hierarchical clustering grouped all acute rejection samples into one cluster and the majority of the no-rejection samples into a second cluster. The acute-rejection samples showed significant changes in gene expression for seven biological pathways. Bronchoalveolar lavage cells are a reliable RNA source for microarray analysis, which is powerful in identifying acute-rejection genes. The individual genes, patterns of gene expression, or biologic pathways identified may represent novel biomarkers for acute rejection.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.200305-644OCDOI Listing

Publication Analysis

Top Keywords

acute rejection
20
gene expression
16
bronchoalveolar lavage
12
lavage cells
12
rejection
9
bronchiolitis obliterans
8
obliterans syndrome
8
genes
8
genes unknown
8
role rejection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!