A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. | LitMetric

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection.

Artif Intell Med

Electrical Engineering Department ESAT/SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Leuven, Belgium.

Published: January 2004

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of the belief network into an informative prior. The first one consists in generating samples according to the most probable parameterization of the Bayesian belief network and using them as virtual data together with the real data in the Bayesian learning of a multilayer perceptron. The second approach consists in transforming probability distributions over belief network parameters into distributions over multilayer perceptron parameters. The essential attribute of the hybrid methodology is that it combines prior knowledge and statistical data efficiently when prior knowledge is available and the sample is of small or medium size. Additionally, we describe how the Bayesian approach can provide uncertainty information about the predictions (e.g. for classification with rejection). We demonstrate these techniques on the medical task of predicting the malignancy of ovarian masses and summarize the practical advantages of the Bayesian approach. We compare the learning curves for the hybrid methodology with those of several belief networks and multilayer perceptrons. Furthermore, we report the performance of Bayesian belief networks when they are allowed to exclude hard cases based on various measures of prediction uncertainty.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0933-3657(03)00053-8DOI Listing

Publication Analysis

Top Keywords

prior knowledge
16
belief network
16
belief networks
12
bayesian belief
12
multilayer perceptron
12
bayesian
8
networks multilayer
8
multilayer perceptrons
8
classification rejection
8
informative prior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!