Molecular genetics are difficult to perform in Bartonella henselae, the causative agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and bacillary peliosis. To elucidate the underlying bacterial pathogenic mechanisms, genetic manipulation of B. henselae is the method of choice. We describe how to perform transposon mutagenesis in B. henselae using transposome technology. B. henselae mutants revealed by this technique showed random transpositional insertion into the chromosome. In contrast to transposon mutagenesis by conjugational transfer, transposome technology allows transposon mutagenesis of early passaged Bartonella spp. with approximately 100-fold higher efficiency. The results show that transposome technique is a rapid, efficient and simple method to generate transposon mutants of B. henselae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(03)00636-xDOI Listing

Publication Analysis

Top Keywords

transposon mutagenesis
16
transposome technology
12
rapid efficient
8
bartonella henselae
8
henselae transposome
8
henselae
6
transposon
5
efficient transposon
4
mutagenesis
4
mutagenesis bartonella
4

Similar Publications

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.

View Article and Find Full Text PDF

Genotype-informed anticancer therapies such as BRAF inhibitors can show remarkable clinical efficacy in BRAF-mutant melanoma; however, drug resistance poses a major hurdle to successful cancer treatment. Many resistance events to targeted therapies have been identified, suggesting a complex path to improve therapeutics. Here, we showed the utility of a piggyBac transposon activation mutagenesis screen for the efficient identification of genes that are resistant to BRAF inhibition in melanoma.

View Article and Find Full Text PDF

Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!