Several years ago, it was discovered that an imbalance of vitamin A during embryonic development has dramatic teratogenic effects. These effects have since been attributed to vitamin A's most active metabolite, retinoic acid (RA), which itself profoundly influences the development of multiple organs including the skeleton. After decades of study, researchers are still uncovering the molecular basis whereby retinoids regulate skeletal development. Retinoid signaling involves several components, from the enzymes that control the synthesis and degradation of RA, to the cytoplasmic RA-binding proteins, and the nuclear receptors that modulate gene transcription. As new functions for each component continue to be discovered, their developmental roles appear increasingly complex. Interestingly, each component has been implicated in skeletal development. Moreover, retinoid signaling comes into play at distinct stages throughout the developmental sequence of skeletogenesis, highlighting a fundamental role for this pathway in forming the adult skeleton. Consistent with these roles, manipulation of the retinoid signaling pathway significantly affects the expression of the skeletogenic master regulatory factors, Sox9 and Cbfa1. In addition to the fact that we now have a greater understanding of the retinoid signaling pathway on a molecular level, much more information is now available to begin placing retinoid signaling within the context of other factors that regulate skeletogenesis. Here we review these recent advances and describe our current understanding of how retinoid signaling functions to coordinate skeletal development. We also discuss future directions and clinical implications in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdrc.10010 | DOI Listing |
Cancer Genomics Proteomics
December 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.
Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA mA modification is a key epigenetic mechanism regulating cellular function, but the role of mA modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of mA modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown.
View Article and Find Full Text PDFNutrients
November 2024
CISCAREX UG, Transvaalstr. 27c, D-13351 Berlin, Germany.
Background: A new vitamin concept, termed vitamin A5, an umbrella term for vitamin A derivatives being direct nutritional precursors for 9--13,14-dihydroretinoic acid and further induction of RXR-signaling, was recently identified with global importance for mental health and healthy brain and nerve functions. Dietary recommendations in the range of 1.1 (0.
View Article and Find Full Text PDFJBMR Plus
January 2025
Translational Research Program in Pediatric Orthopedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
Retinoids are metabolic derivatives of vitamin A and play crucial roles in the regulation of various tissues and organs during prenatal and postnatal development. Active retinoids, like all-trans-retinoic acid, are synthesized in the cytoplasm and subsequently interact with nuclear retinoic acid receptors (RARα, RARβ, and RARγ) to enhance transcription of specific genes. In the absence of retinoids, RARs can still bind to response elements of target genes but repress their transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!