Huntington's disease is a progressive neuro-degenerative disorder in humans, which is scharacterized by onset of dementia, muscular ataxia, and death. Huntington's disease is caused by the expansion of the polyglutamine (polyQ) tract in the N-terminus of the HD protein (Huntingtin). CAG expansion is a dominant gain of function mutation that affects striated neurons in the brain (Cattaneo, 2003, News Physiol Sci 18:34). The evolutionary origins of the vertebrate Hd gene are not well understood. In order to address the evolutionary history of the Hd gene, we have cloned and characterized the expression of the Hd gene in two invertebrate deuterostomes, an echinoderm and an ascidian, and have examined the expression patterns in a phylogenetic context. Echinoderms are basal deuterostomes and ascidians are basal chordates; both are useful for understanding the origins of and evolutionary trends in genes important in vertebrates such as the Huntigton's disease gene. Expression of Hd RNA is detected at all stages of development in both the echinoderm and ascidian studied. In the echinoderm Heliocidaris erythrogramma, Hd is expressed in coelomic mesodermal tissue derivatives, but not in the central nervous system. In the ascidian Halocynthia roretzi expression is located in both mesoderm and nervous tissue. We suggest that the primitive deuterostome expression pattern is not neural. Thus, neural expression of the Hd gene in deuterostomes may be a novel feature of the chordate lineage, and the original role(s) of HD in deuterostomes may have been non-neural.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.b.20DOI Listing

Publication Analysis

Top Keywords

huntington's disease
12
neural expression
8
disease gene
8
expression gene
8
echinoderm ascidian
8
gene
6
expression
6
expression huntington's
4
disease
4
gene chordate
4

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.

View Article and Find Full Text PDF

Associations Between Diabetes Mellitus and Neurodegenerative Diseases.

Int J Mol Sci

January 2025

Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.

Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!