The KAI1 gene is identified as a tumor metastasis suppressor gene in many types of cancer. We examined KAI1 gene and its protein KAI1/CD82 expression by in situ hybridization and immunohistochemical analysis, and found that KAI1 mRNA and protein expression were inversely correlated with lymph node and distant metastasis in digestive tract carcinomas, but not with age and gender of the patient, or with tumor differentiation. Moreover, KAI1/CD82 protein expression positively reflected the survival outcome of patients. Western blot analysis showed that VP-16 increased KAI1/CD82 protein expression obviously in various cancer cell lines, especially in those that were highly metastatic. This increased KAI1/CD82 expression was associated with its translocation from the cytomembrane to the nucleus, in which it interacted with nuclear p53 protein, forming a strong complex, observed by confocal microscopy and co-immunoprecipitation, respectively. In nude mice, after feeding with VP-16, the number of tumors metastasized from spleen to liver was obviously reduced, and KAI1/CD82 protein expression became stronger in those metastatic tumors. Accordingly, this demonstrated that KAI1 might be used as an indicator for predicting the clinical outcome, and VP-16 may be clinically considered as a promising candidate for anti-metastasis with regard to its potential to upregulate KAI1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-003-0781-6 | DOI Listing |
Postgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
J Proteome Res
January 2025
European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, U.K.
The PRIDE database is the largest public data repository of mass spectrometry-based proteomics data and currently stores more than 40,000 data sets covering a wide range of organisms, experimental techniques, and biological conditions. During the past few years, PRIDE has seen a significant increase in the amount of submitted data-independent acquisition (DIA) proteomics data sets. This provides an excellent opportunity for large-scale data reanalysis and reuse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!