A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative damage in the olfactory system in Alzheimer's disease. | LitMetric

Increased oxidative damage is a prominent and early feature of vulnerable neurons in Alzheimer's disease (AD). However, while damage to proteins, sugars, lipids, nucleic acids and organelles such as lysosomes, mitochondria, and endoplasmic reticulum are evident, the source of increased reactive oxygen species has not been determined. Furthermore, a major limitation in further determining the source, as well as finding a means to arrest damage, is the paucity of cellular models directly homologous to AD since the vulnerable neurons of the brain in AD cannot be studied in vitro. Here, we examined the olfactory epithelium in situ to see if neurons there exhibit a similar pathological oxidative balance to vulnerable neurons in AD. In biopsy specimens, (eight AD and three controls) we found that neurons, and also the surrounding epithelial cells, show an increase in oxidative damage for a subset of the markers increased in the brain of cases of AD. Lipid peroxidation and heme oxygenase-1, a stress response protein, were increased, while nucleic acid or protein oxidation, demonstrated in vulnerable neurons in AD, were not increased. These findings highlight the systemic nature of oxidative abnormalities in AD, but that different cell types may express this abnormality by a different array of oxidative stress markers, supporting the potential for using olfactory neurons or other cells derived from AD patients in culture to understand the mechanistic basis for increased oxidative damage in AD and as a model to screen compounds for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-003-0761-7DOI Listing

Publication Analysis

Top Keywords

oxidative damage
16
vulnerable neurons
16
alzheimer's disease
8
increased oxidative
8
oxidative
7
neurons
7
increased
6
damage
5
damage olfactory
4
olfactory system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!