Exercise-induced cardiac hypertrophy: a substrate for sudden death in athletes?

Exp Physiol

Department of Medicine, University Clinical Departments, The Duncan Building, Daulby Street, Liverpool L69 3GA, UK.

Published: September 2003

Cardiac hypertrophy is a general term signifying an increase in cardiac mass in response to applied stress. In mild, early hypertrophy, cardiac myocyte contractile performance may be normal or enhanced, whereas in severe hypertrophy associated with cardiac failure, myocyte contraction is reduced in amplitude and increased in duration. In contrast to the varied contractile response, the duration of electrical excitation shows similar changes in both mild and severe hypertrophy. Action potential duration in mid-myocardial and sub-epicardial layers is increased, which is associated with ventricular arrhythmias (in a similar manner to the long QT syndromes from other causes), based on afterdepolarizations and enhanced automaticity. Single-cell studies following exercise training in animal models show that exercise-induced cardiac hypertrophy displays features similar to mild, compensated hypertrophy from other causes. Developed shortening of unloaded single cells is increased or unchanged, and developed force in single myocytes is enhanced. Action potential duration is increased, apart from in the sub-endocardial layer. As with mild hypertrophy from other causes, this will be pro-arrhythmic because of altered dispersion of repolarization and enhanced automaticity. Major abnormalities of the ECG in man include frequent and complex ventricular ectopy, ST segment changes and prolongation of repolarization. In this review a case is presented for regarding exercise-induced cardiac hypertrophy as being no different from mild cardiac hypertrophy resulting from other, pathological causes. The cellular electrophysiological changes are sufficient to account for many of the abnormalities of the ECG, including high-grade ventricular ectopy. Sudden death in trained athletes who have no evidence of specific heart disease may be a direct consequence of cardiac hypertrophy and altered repolarization.

Download full-text PDF

Source
http://dx.doi.org/10.1113/eph8802619DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
24
exercise-induced cardiac
12
hypertrophy
11
sudden death
8
cardiac
8
severe hypertrophy
8
action potential
8
potential duration
8
enhanced automaticity
8
abnormalities ecg
8

Similar Publications

Aim: To define the association between severe coronary artery disease and widespread atherosclerosis in younger individuals.

Methods: Individuals aged 1-50 years with sudden cardiac death (SCD) from 2019-23, autopsy-proven to be due to coronary artery disease, were identified using the state-wide EndUCD registry. Presence of extra-coronary atherosclerosis greater than modified American Heart Association class III was assessed in 5 arterial beds (intra-cerebral vessels, aorta, carotid, renal and femoral arteries).

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Background: Myocardial disease is an important component of the wide field of cardiovascular disease. However, the phenomenon of multiple myocardial diseases in a single patient remains understudied.

Aim: To investigate the prevalence and impact of myocarditis in patients with genetic cardiomyopathies and to evaluate the outcomes of myocarditis treatment in the context of cardiomyopathies.

View Article and Find Full Text PDF

Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K.

Biomedicines

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!