A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload. | LitMetric

There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides (ouabain, ouabagenin, dihydroouabain, actodigin, digoxin, and resibufogenin). AP shortening was observed only with ouabain and actodigin. There was extensive inotropic variability between agents, with some giving full inotropic effects before automaticity occurred whereas others produced minimal inotropy before toxicity. AP shortening was not a result of alterations in calcium current or the inward rectifier potassium current, but correlated with an increase in steady-state outward current (Iss), which was sensitive to KB-R7943, a Na+-Ca2+ exchange (NCX) inhibitor. Interestingly, Iss was observed following exposure to ouabain and dihydroouabain, suggesting that an additional mechanism is operative with dihydroouabain that prevents AP shortening. Further investigation into differences in inotropy between ouabagenin, dihydroouabain and ouabain revealed almost identical responses under AP voltage clamp. Thus all agents appear to act on the sodium pump and thereby secondarily increase the outward reverse mode NCX current, but the extent of AP duration shortening and positive inotropy elicited by each agent is limited by development of their toxic actions. The quantitative differences between cardiac glycosides suggest that mechanisms independent of sodium pump inhibition may result from an altered threshold for calcium overload possibly involving direct or indirect effects on calcium release from the sarcoplasmic reticulum.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.049189DOI Listing

Publication Analysis

Top Keywords

cardiac glycosides
16
sodium pump
12
action potential
8
cat ventricular
8
ventricular myocytes
8
calcium overload
8
glycosides mechanisms
8
ouabagenin dihydroouabain
8
cardiac
5
glycosides action
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!