Onconase, a cytotoxic ribonuclease from Rana pipiens, possesses pyroglutamate (Pyr) at the N-terminus and has a substrate preference for uridine-guanine (UG). To identify residues responsible for onconase's cytotoxicity, we cloned the rpr gene from genomic DNA and expressed it in Escherichia coli BL21(DE3). The recombinant onconase with Met at the N-terminus had reduced thermostability, catalytic activity and antigenicity. Therefore, we developed two methods to produce onconase without Met. One relied on the endogeneous E.coli methionine aminopeptidase and the other relied on the cleavage of a pelB signal peptide. The Pyr1 substitutional variants maintained similar secondary structures to wild-type onconase, but with less thermostability and specific catalytic activity for the innate substrate UG. However, the non-specific catalytic activity for total RNAs varied depending on the relaxation of base specificity. Pyr1 promoted the structural integrity by forming a hydrogen bond network through Lys9 in alpha1 and Val96 in beta6, and participated in catalytic activity by hydrogen bonds to Lys9 and P(1) catalytic phosphate. Residues Thr35 and Asp67 determined B(1) base specificity, and Glu91 determined B(2) base specificity. The cytotoxicity of onconase is largely determined by structural integrity and specific catalytic activity for UG through Pyr1, rather than non-specific activity for total RNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC203329 | PMC |
http://dx.doi.org/10.1093/nar/gkg746 | DOI Listing |
Sci Rep
December 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFNat Commun
December 2024
College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
The activation of C-C bond of benzocyclobutenones under mild reaction conditions remains a challenge. We herein report a photoinduced catalyst-free regio-specific C1-C8 bond cleavage of benzocyclobutenones, enabling the generation of versatile ortho-quinoid ketene methides for aza-[4 + 2]-cycloaddition with imines, which offers a facile route to isoquinolinone derivatives, including seven family members of protoberberine alkaloids, gusanlung A, B, D, 8-oxotetrahydroplamatine, tetrahydrothalifendine, tetrahydropalmatine, and xylopinine. Furthermore, the catalytic enantioselective version of this strategy is also realized by merging synergistic photocatalysis and chiral Lewis acid catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!