At room temperature, sufficiently grinding the mixtures of copper acetate with 1,2,4-triazole and benzotriazole separately resulted in the proceeding of the solid state reaction. It was found that the acetate acid flowed during the grinding. The heterocycle ligand 1,2,4-triazole or benzotriazole replaced the acetate and coordinates to Cu (II) to form a mixed ligands complex. The elementary analysis results show that the compositions of products were consistent with Cu (C2H2N3)(Ac).H2O and Cu (C6H4N3)(Ac).H2O, respectively. Infrared spectra of both complexes have exhibited the characteristics of C=N vibrations [Cu(C2H2N3)(Ac).H2O, 1,513 cm-1; Cu(C6H4N3)(Ac).H2O, 1,446 cm-1] for heterocycle ligands, C=O [Cu(C2H2N3)(Ac).H2O, 1,570 and 1,406 cm-1; Cu(C6H4N3)(Ac).H2O, 1,604 and 1,422 cm-1] for acetate and O-H (-3,400 cm-1) for water, respectively. The solid state reaction provides a way which is rapid, mild and in the absence of solvent for synthesized new complexes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

copper acetate
8
124-triazole benzotriazole
8
solid state
8
state reaction
8
cm-1 cuc6h4n3ach2o
8
acetate
5
[room-temperature solid-state
4
solid-state synthesis
4
synthesis complexes
4
complexes copper
4

Similar Publications

Our efforts toward the synthesis of the marine natural product portimine are described. The key to the synthesis of the skeleton is a stereoretentive copper-catalyzed C()-C() Stille-type cross-coupling that enables the convergent assembly of functionalized fragments. The core skeleton of portimine was constructed via ring-closing metathesis and transannular acetal formation.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Clew-like CuO/CuO Microsphere Adsorbents for Highly Efficient Anionic Dye Removal.

Langmuir

January 2025

Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.

Adsorbents with high selectivity and adsorption capacity are of significant interest for the removal of dye pollutants. Herein, we report a facile low-temperature solvothermal synthesis of clew-like CuO/CuO microspheres by using cupric acetate monohydrate as the copper resource and ethylene glycol as the solvent and morphology modulator. The synthesized CuO/CuO microspheres showed high selective adsorption to anionic dyes (e.

View Article and Find Full Text PDF

A novel method for the rapid determination of phenolic compounds based on the nanozyme with laccase-like activity.

Environ Res

January 2025

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China. Electronic address:

Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.

View Article and Find Full Text PDF

The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!