The application of Bayesian hierarchical models to measure spatial effects in time to event data has not been widely reported. This case study aims to estimate the effect of area of residence on waiting times to coronary artery bypass graft (CABG) and to assess the role of important individual specific covariates (age, sex and disease severity). The data involved all patients with definite coronary artery disease who were referred to one cardiothoracic unit from five contiguous health authorities covering 488 electoral wards (areas). Time to event was the waiting time in months from angiography (diagnosis) to CABG (event). A number of discrete time survival models were fitted to the data. A discrete baseline hazard was estimated by fitting waiting time non-parametrically into the models. Ward was fitted as a spatial effect using a Gaussian Markov random field prior. Individual specific covariates considered were age, sex and number of diseased vessels. The recently proposed DIC criteria was used for comparing models. Results showed a marked spatial effect on time to bypass surgery after including age, sex and disease severity in the model. Notably this spatial effect was not apparent when these covariates were not included in the model. The observed small area spatial variation in time to CABG warrants further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.1535DOI Listing

Publication Analysis

Top Keywords

time event
12
coronary artery
12
age sex
12
spatial effects
8
time
8
effects time
8
event data
8
case study
8
months angiography
8
artery bypass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!