The structural features of a series of linear hexapeptides of general formula Boc-B-A(r)-T-A(m)-OtBu, where A is L-Ala or Aib (alpha-aminoisobutyric acid), B is (R)-Bin, a binaphthyl-based C(alpha,alpha)-disubstituted Gly residue, T is Toac, a nitroxide spin-labeled C(alpha,alpha)-disubstituted Gly, and r+m=4, were investigated in methanol solution by fluorescence, transient absorption, IR and CD spectroscopic studies, and by molecular mechanics calculations. These peptides are denoted as B-T/r-m, to emphasize the different position of Toac with respect to that of the Bin fluorophore in the amino acid sequence. The rigidity of the B-T donor-acceptor pair and of the Aib-rich backbone allowed us to investigate the influence of the interchromophoric distance and orientation on the photophysics of the peptides examined. The excited state relaxation processes of binaphthyl were investigated by time-resolved fluorescence and transient absorption experiments. Dynamic quenching of the excited singlet state of binaphthyl by Toac was successfully interpreted by the Förster energy transfer model, provided that the mutual orientation of the chromophores is taken into account. This implies that interconversion among conformational substates, which involves puckering of the Toac piperidine ring, is slow on the time scale of the transfer process, that is slower than 5 ns. By comparison of the experimental and theoretical data, the type of secondary structure (right-handed 3(10) helix) from the B-T/r-m peptides in solution was determined; this would not have been achievable by using the CD and NMR data only, as the data are not diagnostic in this case. Static quenching was observed in all peptides examined but B-T/1-3, where the effect can be ascribed to a non-fluorescent complex. Among the computed low-energy conformers of these peptides, there is one structure exhibiting a NO(.)-naphthalene center-to-center distance <6 A, which might be assigned to this complex. The overall results emphasize the versatility of fluorescence experiments in 3D-structural studies in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200304727DOI Listing

Publication Analysis

Top Keywords

donor-acceptor pair
8
calphaalpha-disubstituted gly
8
fluorescence transient
8
transient absorption
8
peptides examined
8
peptides
5
combined spectroscopic
4
spectroscopic theoretical
4
theoretical study
4
study series
4

Similar Publications

On the Role of a Polymer Matrix in Enhancing Energy Transfer Efficiency Using Coumarin 6 and Rhodamine B as Donor and Acceptor Pairs.

Chem Asian J

January 2025

Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, Chile.

This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.

View Article and Find Full Text PDF

Graphdiyne (GDY) alone as a photocatalyst is unsatisfactory because of its low crystallinity, limited regulation of the band gap, weak photogenerated charge separation, , and heterojunctioning with other materials is necessary to activate the photocatalytic activity of GDY. Through elaborate design, a diacetylene-rich linker (S2) was prepared and employed to construct a crystalline and structurally well-defined GDY-like covalent organic framework (COF, namely S2-TP COF) which merges the merits of both COF and GDY to boost the photocatalytic hydrogen evolution reaction (HER). By theoretical prediction on the donor-acceptor (D-A) pair, two other monoacetylene-bridged COFs (S1-TP COF and S3-TP COF) were prepared for comparison.

View Article and Find Full Text PDF

Halogen-bonding (XB) interactions have been extensively studied in the preparation of crystalline frameworks, yet porous 3D framework materials built on XBs remain elusive. The donor-acceptor interactions are strengthened by use of anionic XB acceptors; however, the requisite charge-balancing cations typically disrupt the framework and occupy potential void space. In this work, we prepare a tetratopic XB donor bearing a crown ether moiety for sodium cation sequestration.

View Article and Find Full Text PDF

Manipulating Oxygen Vacancies in γ-GaO Nanocrystals: Correlation between Defect Location, Charge State, and Photophysical Properties.

J Phys Chem Lett

December 2024

Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Recent advancements in colloidal synthesis have enabled precise control of extrinsic dopants in semiconductor nanocrystals (NCs), enriching our understanding of dopant-exciton interactions and opening new avenues for controlling NC properties. However, the manipulation of intrinsic defects in colloidal NCs remains challenging. Here, we demonstrate regulation of oxygen vacancy concentration and location in γ-GaO NCs, significantly altering their photoluminescent properties.

View Article and Find Full Text PDF

Luminescence Mechanisms of Quaternary Zn-Ag-In-S Nanocrystals: ZnS:Ag, In or AgInS:Zn?

Chemphyschem

November 2024

College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan.

Highly emissive Zn-Ag-In-S nanocrystals have attracted attention as derivatives of I-III-VI-type nanocrystals without the use of toxic elements. The wide tunability of their luminescence wavelengths is attributed to the controllable bandgap of the solid solution between ZnS and AgInS. However, enhancement of the photoluminescence quantum yield (PL-QY) depending on the chemical composition has not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!