Parkinson's disease (PD) is a common neurodegenerative disorder that involves the selective degeneration of midbrain dopaminergic neurons. Recently DJ-1 mutations have been linked to autosomal-recessive early-onset Parkinsonism in two European families. By using gel filtration assays under physiological conditions we demonstrate that DJ-1 protein forms a dimeric structure. Conversely, the DJ-1L166P mutant protein shows a different elution profile as compared with DJ-1WT both in overexpression cellular systems or in lymphoblasts cells, suggesting that it might form higher order protein structures. Furthermore we observed that the level of DJ-1L166P mutant protein in the patient's lymphoblasts was very low as compared with the wild-type protein. We excluded a potential transcriptional impairment by performing quantitative RT-PCR on the patient's material. Pulse-chase experiments in transfected COS-1 cells and cycloheximide treatment in control and patient lymphoblasts indicated that the mutant protein was rapidly degraded. This rapid turnover and the structural changes of DJ-1L166P mutant protein might be crucial in the disease pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddg304DOI Listing

Publication Analysis

Top Keywords

mutant protein
20
dj-1l166p mutant
16
protein
9
parkinson's disease
8
dj-1l166p
4
protein associated
4
associated early
4
early onset
4
onset parkinson's
4
disease unstable
4

Similar Publications

Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.

View Article and Find Full Text PDF

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related fatalities globally, accounting for the highest mortality rate among both men and women. Mutations in the epidermal growth factor receptor (EGFR) gene are frequently found in non-small cell lung cancer (NSCLC). Since curcumin and CB[2]UN support various medicinal applications in drug delivery and design, we investigated the effect of curcumin and CB[2]UN-based drugs in controlling EGFR-mutant NSCLC through a dodecagonal computational approach.

View Article and Find Full Text PDF

Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.

View Article and Find Full Text PDF

The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!