The present study was undertaken to define the mechanisms governing the regulation of the novel renal brush-border membrane (BBM) Na-phosphate (Pi) cotransporter designated type IIc (Npt2c). To address this issue, the renal expression of Npt2c was compared in two hypophosphatemic mouse models with impaired renal BBM Na-Pi cotransport. In mice homozygous for the disrupted Npt2a gene (Npt2-/-), BBM Npt2c protein abundance, relative to actin, was increased 2.8-fold compared with Npt2+/+ littermates, whereas a corresponding increase in renal Npt2c mRNA abundance, relative to beta-actin, was not evident. In contrast, in X-linked Hyp mice, which harbor a large deletion in the Phex gene, the renal abundance of both Npt2c protein and mRNA was significantly decreased by 80 and 50%, respectively, relative to normal littermates. Pi deprivation elicited a 2.5-fold increase in BBM Npt2c protein abundance in Npt2+/+ mice but failed to elicit a further increase in Npt2c protein in Npt2-/- mice. Pi restriction led to an increase in BBM Npt2c protein abundance in both normal and Hyp mice without correcting its renal expression in the mutants. In summary, we report that BBM Npt2c protein expression is differentially regulated in Npt2-/- mice and Hyp mice and that the Npt2c response to low-Pi challenge differs in both hypophosphatemic mouse strains. We demonstrate that Npt2c protein is maximally upregulated in Npt2-/- mice and suggest that Npt2c likely accounts for residual BBM Na-Pi cotransport in the knockout model. Finally, our data indicate that loss of Phex function abrogates renal Npt2c protein expression.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00252.2003DOI Listing

Publication Analysis

Top Keywords

npt2c protein
32
bbm npt2c
16
npt2c
14
renal expression
12
protein abundance
12
hyp mice
12
npt2-/- mice
12
npt2a gene
8
x-linked hyp
8
renal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!