System for simultaneous tissue-specific and disease-specific regulation of therapeutic gene expression.

Hum Gene Ther

Department of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA.

Published: September 2003

Gene therapy has been proposed as an alternative strategy for treating nongenetic disorders, such as cancer and coronary artery disease. However, for many of these types of diseases, the therapeutic genes must be tightly regulated, as extensive toxicity and pathology can result if their expression is not adequately controlled. Toward this end, we have developed a regulatory system in which the expression of a therapeutic transgene is controlled simultaneously by both a tissue-specific promoter and a disease-specific promoter. Thus, the transgene of interest will be expressed in a given cell only if both of these promoters are active. Unlike many other transgene-regulatory systems that have been previously developed, this system does not require the persistent expression of any foreign genes that could provoke an immune response or lead to toxicity. As proof of concept, we synthesized a construct harboring the lacZ transgene that is under the control of both the hepatocyte-specific human alpha(1)-antitrypsin promoter and the zinc-inducible mouse metallothionein promoter. We show that reporter gene expression from this construct is regulated in both a hepatocyte-specific and zinc-regulated manner, as reporter gene expression occurs only in hepatocyte-derived cells that have been exposed to zinc. The improved regulation offered by our system would facilitate the targeting of transgene expression to sites of disease in the body and spare healthy tissue, thereby considerably enhancing the therapeutic window of gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1089/104303403767740795DOI Listing

Publication Analysis

Top Keywords

gene expression
12
gene therapy
8
reporter gene
8
expression
7
gene
5
system
4
system simultaneous
4
simultaneous tissue-specific
4
tissue-specific disease-specific
4
disease-specific regulation
4

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!