Real-time PCR provides improved detection and titer determination of bacteriophage.

Biotechniques

Department of Pathology, School of Medicine, University of Maryland Baltimore, 725 West Lombard Street, Rm S407, Baltimore, MD 21201, USA.

Published: August 2003

The plaque assay is the traditional method for the quantification of bacteriophage, particularly for lambda cloning vectors. Unfortunately, this technique is fraught with procedural difficulties, and the quality of the data obtained from this "gold standard" assay may be inaccurate due to the subjective interpretation of the results. The application of quantitative real-time PCR (QPCR) technology can address these issues and be a more accurate platform to evaluate phage growth conditions and quantify viral titers in phage preparations. QPCR, with an improved primer set specific for lambda phage and coupled with fluorescent dye detection of PCR products, was used to detect and quantify phages in lysates with no prior DNA purification. Phages were detected below one plaque-forming unit, and at least 89 viral copies were detected from a purified DNA sample. When unknown concentrations of various phage preparations were assessed using QPCR, they were attained more efficiently, with greater sensitivity and precision, and the method produced more accurate quantitative data spanning a wider linear range than those obtained by the plaque assay (six logs vs. one log, respectively). Finally, QPCR for the detection of phage has multiple applications, including conventional cloning and in alternative fields of study such as environmental sciences.

Download full-text PDF

Source
http://dx.doi.org/10.2144/03352rr02DOI Listing

Publication Analysis

Top Keywords

real-time pcr
8
plaque assay
8
phage preparations
8
phage
5
pcr improved
4
improved detection
4
detection titer
4
titer determination
4
determination bacteriophage
4
bacteriophage plaque
4

Similar Publications

Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Detection of Francisellaceae and the differentiation of main European F. tularensis ssp. holarctica strains (Clades) by new designed qPCR assays.

BMC Microbiol

January 2025

Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.

Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Yak milk inhibits osteoclast differentiation by suppressing TRPV5 expression.

J Dairy Sci

January 2025

Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.

Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!