Electrophoretic analysis of ITS from Piscirickettsia salmonis Chilean isolates.

FEMS Microbiol Lett

Laboratorio de Virología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40 Correo 33, Santiago, Chile.

Published: August 2003

Piscirickettsia salmonis is the most important pathogen in salmonid mariculture in Chile. Since it was reported numerous piscirickettsiosis outbreaks have occurred differing in virulence and mortality. Genetic variability of P. salmonis isolates has been suggested as one factor to explain this. However until now isolates obtained from outbreaks have not been analyzed. Knowledge of genetic variability of P. salmonis is very limited and also a useful screening method for genetic variations in isolates without sequencing is not available. Here we report an electrophoretic analysis of internal transcribed spacer region (ITS) of eleven P. salmonis isolates obtained from different salmon species and places in southern Chile. When PCR products were submitted to polyacrylamide gel electrophoresis (PAGE) a characteristic electrophoretic pattern was observed, distinguishable from ITS of other bacteria, including fish pathogens. Even though this pattern is conserved in all isolates, a difference in ITS electrophoretic mobility was observed, determining clearly two groups: ITS with higher or with lower electrophoretic mobility, including LF-89 and EM-90 isolates, respectively. A higher ITS sequence homology inside each group was shown by heteroduplex mobility assay (HMA). Our results show that genetic variability between Chilean P. salmonis isolates allows the differentiation of two groups with similar behavior observed previously when six P. salmonis isolates from three geographic origins were analyzed by 16S, 23S and ITS sequencing. PAGE analysis of ITS and HMA could be a basis to develop an assay for screening genetic variability between P. salmonis isolates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0378-1097(03)00489-0DOI Listing

Publication Analysis

Top Keywords

salmonis isolates
20
genetic variability
16
variability salmonis
12
isolates
10
electrophoretic analysis
8
salmonis
8
piscirickettsia salmonis
8
electrophoretic mobility
8
electrophoretic
5
genetic
5

Similar Publications

Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.

View Article and Find Full Text PDF

Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L.

View Article and Find Full Text PDF

Inter-Laboratory Comparison of qPCR Assays for Piscirickettsia salmonis in Atlantic Salmon (Salmo salar L.) in 11 Chilean Laboratories.

J Fish Dis

February 2025

Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Real-time PCR (qPCR) testing is an essential component of early detection surveillance systems for Piscirickettsia salmonis infection in Atlantic salmon farms in Chile. Currently, all 11 laboratories in the authorised diagnostic laboratory network use assays based on published protocols. Compared with other P.

View Article and Find Full Text PDF

In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P.

View Article and Find Full Text PDF

New insight into the biological activity of NK-lysin antimicrobial peptides.

Front Immunol

April 2024

Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of from Atlantic salmon () using EST sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!