The structure of Plasmodium vivax dihydrofolate reductase (PvDHFR), a potentially important target for antimalarial chemotherapy, was determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with DHFRs of known crystal structure. The comparison of the complexes of the antifolate inhibitor pyrimethamine bound at the active sites of PvDHFR and PfDHFR, the related enzyme from Plasmodium falciparum, prospected the possibility of using structure-based drug design to develop inhibitors that are effective against both malarial enzymes. This study constitutes a first step toward understanding of the antifolate-PvDHFR molecular interactions and possible rationalization of resistance in vivax malaria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(03)00676-0DOI Listing

Publication Analysis

Top Keywords

structure plasmodium
8
plasmodium vivax
8
vivax dihydrofolate
8
dihydrofolate reductase
8
determined homology
8
homology modeling
8
modeling molecular
8
molecular dynamics
8
dynamics refinement
8
refinement structure
8

Similar Publications

It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.

View Article and Find Full Text PDF

The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites.

Cells

January 2025

Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.

View Article and Find Full Text PDF

SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.

View Article and Find Full Text PDF

Mutational analysis of an antimalarial drug target, ATP4.

Proc Natl Acad Sci U S A

January 2025

Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129.

Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.

View Article and Find Full Text PDF

As the resistance of to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position -9 of the β-carboline ring and evaluated their efficacy in vitro against 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!