Omsk hemorrhagic fever virus (OHF) is a tick-borne flavivirus endemic to Western Siberia. This virus is the only known tick-borne flavivirus to cause hemorrhagic disease in humans in the absence of encephalitis. OHF virus circulates within a small, defined niche in which other tick-borne complex flaviviruses are also present. The objectives of this study were to genetically classify OHF virus based on its complete genome and to identify genetic determinants that might be involved in tissue tropism and viral replication leading to the disease state caused by this virus. The OHF virus genome was sequenced and phylogenetic analysis demonstrated that OHF virus falls within the tick-borne encephalitis serocomplex of flaviviruses, yet is distinct from other members of the complex, including those closely associated geographically. OHF is also distinct from Alkhurma (ALK) and Kyasanur forest disease (KFD) viruses, both of which cause disease that includes hemorrhagic and encephalitic manifestations. Several amino acid residues were found to be distinct among OHF, KFD, and ALK viruses; these residues include E-76, which is closely associated with the viral envelope protein fusion peptide. In addition, variation between the viral 5'-untranslated region of OHF and other tick-borne flaviviruses suggests potential variability in viral replication. These data demonstrate that OHF is a unique virus among the tick-borne flaviviruses and also provide insight to viral biodiversity and tropism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6822(03)00246-0 | DOI Listing |
Viruses
April 2022
Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany.
(OHFV) is the agent leading to Omsk haemorrhagic fever (OHF), a viral disease currently only known in Western Siberia in Russia. The symptoms include fever, headache, nausea, muscle pain, cough and haemorrhages. The transmission cycle of OHFV is complex.
View Article and Find Full Text PDFFEMS Microbiol Lett
June 2021
Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms.
View Article and Find Full Text PDFJ Biotechnol
July 2014
Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland. Electronic address:
The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E.
View Article and Find Full Text PDFThe main aspects of epidemiology and epizootology of the Omsk hemorrhagic fever (OHF) are analyzed. The discovery of the virus OHF in 1947, as well as the first outbreak of new diseases in the districts of the Omsk region, is described. Comprehensive work for decryption of the etiology of the OHF by specialists from the Omsk and Moscow Institutes is carried out.
View Article and Find Full Text PDFExtremophiles
March 2014
Matis ohf, Vinlandsleid 12, 113, Reykjavik, Iceland.
Several bacteriophages that infect different strains of the thermophilic bacterium Rhodothermus marinus were isolated and their infection pattern was studied. One phage, named RM378 was cultivated and characterized. The RM378 genome was also sequenced and analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!