A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetics and mechanism of oxygen atom transfer from methyl phenyl sulfoxide to triarylphosphines catalyzed by an oxorhenium(V) dimer. | LitMetric

An oxorhenium(V) dimer, [PMeReO(mtp)](2), D, where mtpH(2) is 2-(mercaptomethyl)thiophenol, catalyzes oxygen atom transfer reaction from methyl phenyl sulfoxide to triarylphosphines. Kinetic studies in benzene-d(6) at 23 degrees C indicate that the reaction takes place through the formation of an adduct between D and sulfoxide. The equilibrium constants, K(DL), for adduct formation were determined by spectrophotometric titration, and the values of K(DL) for MeS(O)C(6)H(4)-4-R were obtained as 14.1(2), 5.7(1), and 2.1(1) for R = Me, H, and Br, respectively. Following sulfoxide binding, oxygen atom transfer occurs with either internal or external nucleophilic assistance. Because [MeReO(mtp)](2) is a much more reactive catalyst than its monomerized form, MeReO(mtp)PPh(3), loss of the active catalyst during the time course of the reaction must be taken into account as a part of the kinetic analysis. As it happens, sulfoxide catalyzes monomerization. Monomerization by triarylphosphines was also studied in the presence of sulfoxide, and a mechanism for that reaction was also proposed. Both the phosphine-assisted monomerization and the phosphine-assisted pathway for oxygen atom transfer involve transition states with ternary components, D, sulfoxide, and phosphine, which we suggest are structural isomers of one another.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic034322qDOI Listing

Publication Analysis

Top Keywords

oxygen atom
16
atom transfer
16
methyl phenyl
8
phenyl sulfoxide
8
sulfoxide triarylphosphines
8
oxorheniumv dimer
8
sulfoxide
7
kinetics mechanism
4
oxygen
4
mechanism oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!