De novo aberrations in chromosome structure represent important categories of paternally transmitted genetic damage. Unlike numerical abnormalities, the majority of de novo structural aberrations among human offspring are of paternal origin. We report the development of a three-color fluorescence in situ hybridization (FISH) assay (CT8) to detect mouse sperm carrying structural and numerical chromosomal abnormalities. The CT8 assay uses DNA probes for the centromeric and telomeric regions of chromosome 2, and a probe for the subcentromeric region of chromosome 8. The CT8 assay was used to measure the frequencies of sperm carrying certain structural aberrations involving chromosome 2 (del2ter, dup2ter, del2cen, dup2cen), disomy 2, disomy 8, and sperm diploidy. Analysis of approximately 80,000 sperm from eight B6C3F1 mice revealed an average baseline frequency of 2.5 per 10,000 sperm carrying partial duplications and deletions of chromosome 2. Extrapolated to the entire haploid genome, approximately 0.4% of mouse sperm are estimated to carry structural chromosomal aberrations, which is more than fivefold lower than the spontaneous frequencies of sperm with chromosome structural aberrations in man. We validated the CT8 assay by comparing the frequencies of abnormal segregants in sperm of T(2;14) translocation carriers detected by this assay against those detected by chromosome painting cytogenetic analysis of meiosis II spermatocytes. The CT8 sperm FISH assay is a promising method for detecting structural chromosome aberrations in mouse sperm with widespread applications in genetics, physiology, and genetic toxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.10299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!