Relationship between NMDA receptor expression and MPP+ toxicity in cultured dopaminergic cells.

J Neurosci Res

Department of Chemistry/Neuroscience Program, Trinity College, Hartford, Connecticut 06106, USA.

Published: September 2003

It has been suggested that excitotoxicity could be contributing to dopamine cell loss after methylphenylpyridinium ion (MPP+) exposure, although the literature regarding this is contradictory. Given that in cell culture excitotoxicity has been reported to be dependent on culture age, we postulated that these discrepant results might be explained by a difference in developmental expression of N-methyl-D-aspartate (NMDA) receptors. To test this, mesencephalic cells were cultured and the number of dopaminergic neurons (tyrosine hydroxylase-immunoreactive cells [TH-IR] cells) expressing the NMDA R1 subunit (NR1) was determined using double-label immunofluorescence microscopy. An increase in the percentage of TH-IR cells expressing NR1 occurred over time in culture and this correlated with the toxicity of NMDA. At 7 days in vitro (DIV 7), only 17% (n=167 cells/4 experiments) of TH-IR cells expressed NR1 and these cells were insensitive to NMDA toxicity. This increased to 80% (n=254 cells/6 experiments) by DIV 11 and cultures were now susceptible to NMDA-induced injury. Cultures grown for either 7 or 11 days were treated for 48 hr with increasing concentrations of MPP= (0.5-20 microM) and the loss of dopaminergic neurons was determined by cell counting. Cultures at DIV 7 were more sensitive to MPP= than 11-day-old cultures (LD50= approximately 0.75 microM vs. 15 microM, respectively). Co-exposure to MK-801 (5 microM) did not protect against MPP+ toxicity in young cultures, but attenuated MPP+ toxicity in the older cultures, becoming statistically significant at 20 microM MPP+. These data indicate that the activation of NMDA receptors is not required for, but can contribute to, MPP(+)-induced neurodegeneration of dopaminergic cells in culture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.10732DOI Listing

Publication Analysis

Top Keywords

mpp+ toxicity
12
cells
8
dopaminergic cells
8
nmda receptors
8
dopaminergic neurons
8
cells expressing
8
th-ir cells
8
cultures
6
mpp+
5
toxicity
5

Similar Publications

TAR DNA-binding protein (TDP-43) and Metastasis Associated Lung Adenocarcinoma Transcript (MALAT1) RNA are both abundantly expressed in the human cell nucleus. Increased interaction of TDP-43 and MALAT1, as well as dysregulation of TDP-43 function, was previously identified in brain samples from patients with neurodegenerative disease compared to healthy brain tissues. We hypothesized that TDP-43 function may depend in part on MALAT1 expression levels.

View Article and Find Full Text PDF

A digestive system microphysiological platform for assessment of internal-exposure risks and metabolic disease mechanisms induced by multi-size nano-plastics.

J Hazard Mater

December 2024

Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:

Nano-plastics (NPs) are emerging hazardous environmental contaminants that pose health risks with size-dependent toxic effects and are potential risk factors for hepatocellular carcinoma (HCC) and lipid metabolism disorders including non-alcoholic fatty liver disease (NAFLD). However, their underlying molecular mechanisms remain unclear. To shed more light on the causes of these risks, we developed a digestive system microphysiological platform (DS-MPP) for simulating dynamic internal-exposure of multi-size NPs in the gastrointestinal tract and liver.

View Article and Find Full Text PDF

Cytoprotective effect of melatonin against MPP toxicity in SH-SY5Y cells: Role sharing of two types of antioxidative activities of melatonin.

Biochem Biophys Res Commun

January 2025

Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan. Electronic address:

Melatonin is a neurohormone that is not only a regulator of circadian cycles, but also a potent antioxidant. Parkinson's disease (PD) is a major neurodegenerative disease that may result from oxidative stress as a part of its pathogenic cascade. Therefore, antioxidants, including melatonin, have attracted attention as potential candidates for neuroprotection against PD-related neurotoxicity.

View Article and Find Full Text PDF

The Link Between Paraquat and Demyelination: A Review of Current Evidence.

Antioxidants (Basel)

November 2024

Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal.

Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons.

View Article and Find Full Text PDF

(synonym ) is an important South African medicinal plant used traditionally to treat different human pathologies and is considered an adaptogenic plant. This study sought to isolate compounds from the plant and determine their protective potentials using SH-SY5Y cells and MPP (1-methyl-4-phenylpyridinium) to mimic Parkinson's disease. The phytochemical analysis of a 70% aqueous methanolic extract of leaves resulted in the isolation and identification of 11 pure compounds (-), among which compounds and were identified as new metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!