To clarify which vesicular glutamate transporter (VGluT) is used by excitatory axon terminals of the retinofugal system, we examined immunoreactivities and mRNA signals for VGluT1 and VGluT2 in the rat retina and compared immunoreactivities for VGluT1 and VGluT2 in the retinorecipient regions using double immunofluorescence method, anterograde tracing, and immunoelectron microscopy. Furthermore, the changes of VGluT1 and VGluT2 immunoreactivities were studied after eyeball enucleation. Intense immunoreactivity and mRNA signal for VGluT2, but not for VGluT1 immunoreactivity, were observed in most perikarya of ganglion cells in the retina. Immunoelectron microscopy revealed that VGluT1- and VGluT2-immunolabeled terminals made asymmetrical synapses, suggesting that they were excitatory synapses, and that VGluT1-immunolabeled terminals were smaller than VGluT2-labeled ones in many retinorecipient regions, such as the dorsal lateral geniculate nucleus (LGd) and superior colliculus (SC). Double immunofluorescence study further revealed that almost no VGluT2 immunoreactivity was colocalized with VGluT1 in the retinorecipient regions. After wheat germ agglutinin (WGA) injection into the eyeballs, WGA immunoreactivity was colocalized in the single axon terminals of LGd and SC with VGluT2 but not VGluT1 immunoreactivity. After unilateral enucleation, VGluT2 immunoreactivity in the LGd, SC, nucleus of the optic tract, and nuclei of the accessory optic tract in the contralateral side of the enucleated eye was clearly decreased. Although only a small change of VGluT2 immunoreactivity was observed in the contra- and ipsilateral suprachiasmatic nuclei, olivary pretectal nucleus, anterior pretectal nucleus, and posterior pretectal nucleus, moderate reduction of VGluT2 was found in these regions after bilateral enucleation. On the other hand, almost no change in VGluT1 immunoreactivity was found in the structures examined in the present enucleation study. Thus, the present results support the notion that the retinofugal pathways are glutamatergic, and indicate that VGluT2, but not VGluT1, is employed for accumulating glutamate into synaptic vesicles of retinofugal axons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10848 | DOI Listing |
Front Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia. Electronic address:
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours.
View Article and Find Full Text PDFEur J Neurosci
November 2024
VA Medical Center/Portland, Portland, Oregon, USA.
Anxiety is a prominent non-motor symptom of Parkinson's disease (PD). Changes in the B-spectrum recordings in PD patients of the prefrontal cortex correlate with increased anxiety. Using a rodent model of PD, we reported alterations in glutamate synapses in the striatum and substantia nigra following dopamine (DA) loss.
View Article and Find Full Text PDFElife
September 2024
Department of Neuroscience, Baylor College of Medicine, Houston, United States.
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Pathophysiology, Bengbu Medical University, Bengbu Anhui 233030, China; Basic and Clinical Key Laboratory of Cardiovascular and Cerebrovascular Diseases of Bengbu Medical University, Bengbu Anhui 233030, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!