Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe EMG responses recorded in active masseter muscles following unilateral and bilateral electrical vestibular stimulation (EVS, current pulses of 5 mA intensity, 2 ms duration, 3 Hz frequency). Averaged responses in unrectified masseter EMG induced by unilateral EVS were examined in 16 healthy subjects; effects induced by bilateral (transmastoid) stimulation were studied in 10 subjects. Results showed that unilateral as well as bilateral EVS induces bilaterally a clear biphasic response (onset latency ranging from 7.2 to 8.8 ms), that is of equal amplitude and latency contra- and ipsilateral to the stimulation site. In all subjects, unilateral cathodal stimulation induced a positive-negative response termed p11/n15 according to its mean peak latency; the anodal stimulation induced a response of opposite polarity (n11/p15) in 11/16 subjects. Cathodal responses were significantly larger than anodal responses. Bilateral stimulation induced a p11/n15 response significantly larger than that induced by the unilateral cathodal stimulation. Recordings from single motor units showed that responses to cathodal stimulation corresponded to a brief (2-4 ms) silent period in motor unit discharge rate. The magnitude of EVS-induced masseter response was linearly related to current intensity and scaled with the mean level of EMG activity. The size of the p11/n15 response was asymmetrically modulated when subjects were tilted on both sides; in contrast head rotation did not exert any influence. Control experiments excluded a possible role of cutaneous receptors in generating the masseter response. We conclude that transmastoid electrical stimulation evokes vestibulomasseteric reflexes in healthy humans at latencies consistent with a di-trisynaptic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343496 | PMC |
http://dx.doi.org/10.1113/jphysiol.2003.047274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!