AI Article Synopsis

Article Abstract

We compared the transcriptome, proteome, and nucleotide sequences between the parent strain Escherichia coli W3110 and the L-threonine-overproducing mutant E. coli TF5015. DNA macroarrays were used to measure mRNA levels for all of the genes of E. coli, and two-dimensional gel electrophoresis was used to compare protein levels. It was observed that only 54 of 4,290 genes (1.3%) exhibited differential expression profiles. Typically, genes such as aceA, aceB, icdA, gltA, glnA, leu operon, proA, thrA, thrC, and yigJ, which are involved in the glyoxylate shunt, the tricarboxylic acid cycle, and amino acid biosynthesis (L-glutamine, L-leucine, proline, and L-threonine), were significantly upregulated, whereas the genes dadAX, hdeA, hdeB, ompF, oppA, oppB, oppF, yfiD, and many ribosomal protein genes were downregulated in TF5015 compared to W3110. The differential expression such as upregulation of thr operon and expression of yigJ would result in an accumulation of L-threonine in TF5015. Furthermore, two significant mutations, thrA345 and ilvA97, which are essential for overproduction of L-threonine, were identified in TF5015 by the sequence analysis. In particular, expression of the mutated thrABC (pATF92) in W3110 resulted in a significant incremental effect on L-threonine production. Upregulation of aceBA and downregulation of b1795, hdeAB, oppA, and yfiD seem to be linked to a low accumulation of acetate in TF5015. Such comprehensive analyses provide information regarding the regulatory mechanism of L-threonine production and the physiological consequences in the mutant stain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC193774PMC
http://dx.doi.org/10.1128/JB.185.18.5442-5451.2003DOI Listing

Publication Analysis

Top Keywords

parent strain
8
l-threonine-overproducing mutant
8
differential expression
8
l-threonine production
8
tf5015
5
genes
5
l-threonine
5
global analyses
4
analyses transcriptomes
4
transcriptomes proteomes
4

Similar Publications

Construction and bacteriostatic effect analyses of a recombinant thermostable Newcastle disease virus expressing cecropin AD.

Vet Microbiol

January 2025

Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:

Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.

View Article and Find Full Text PDF

Co-Infection of Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment.

Viruses

January 2025

Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.

Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range.

View Article and Find Full Text PDF

The fungal genus is noted for its bioluminescence and the production of biologically active secondary metabolites. We isolated 47 fungal strains of germinated from spores of a single mushroom. We first noted a high degree of variation in the outward appearances in radial growth and pigmentation among the cultures.

View Article and Find Full Text PDF

The Passage of Chaperonins to Extracellular Locations in Requires a Functional Dot/Icm System.

Biomolecules

January 2025

Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.

HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.

View Article and Find Full Text PDF

Exploring the clinical value of procalcitonin, c-reactive protein, white blood cell count, and neutrophil-to-lymphocyte ratio in the early diagnosis of bloodstream infections in children.

BMC Pediatr

January 2025

Department of Clinical Laboratory, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.

Backgroud: In the diagnosis of bloodstream infections (BSI) in children, compared to the gold standard of blood culture, markers in the blood offer advantages such as rapid results and cost-effectiveness. Therefore, we investigated the clinical value of procalcitonin (PCT), C-reactive protein (CRP), white blood cell count (WBC), and neutrophil-to-lymphocyte ratio (NLR) in the early diagnosis of BSI in children.

Methods: This study included a retrospective analysis of 309 suspected BSI cases and patients were categorized into 2 groups based on blood culture results: blood culture-positive group, and blood culture-negative group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!