Bridging the electrochemical and biological worlds with hybrid nanocomposites.

Trends Biotechnol

Energy and Environmental Science and Technology Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA.

Published: September 2003

Recent discoveries arising from a combination of the biological, physical, chemical and materials sciences have resulted in the invention of numerous hybrid molecules that possess strengths inherent to each individual discipline. Nanocomposites that link biological molecules to inorganic moieties have led to a family of new reagents with unique capabilities for cellular imaging and macromolecule detection. A recent report has extended the applications of these hybrid molecules from their use as detection and scaffolding reagents into the realm of a biologically functional molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0167-7799(03)00192-6DOI Listing

Publication Analysis

Top Keywords

hybrid molecules
8
bridging electrochemical
4
electrochemical biological
4
biological worlds
4
worlds hybrid
4
hybrid nanocomposites
4
nanocomposites discoveries
4
discoveries arising
4
arising combination
4
combination biological
4

Similar Publications

Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebra Fish.

Arterioscler Thromb Vasc Biol

January 2025

School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.

Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.

View Article and Find Full Text PDF

Exploring the Therapeutic Potential of 1,3-Thiazole: A Decade Overview.

Med Chem

January 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna-431203, Maharashtra, India.

The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.

View Article and Find Full Text PDF

Breast cancer is one of the most common cancers found in women worldwide. Besides the availability of clinical drugs, drug resistance and considerable side effects are concerning issues driven the needs for the discovery of novel anticancer agents. Aromatase inhibition is one of the effective strategies for management of hormone-dependent breast cancer.

View Article and Find Full Text PDF

The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!