Dendritic processing within olfactory bulb circuits.

Trends Neurosci

Department of Physiology and Biophysics, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, MS3607 Campus Box C-240, Denver, CO 80262, USA.

Published: September 2003

Odors elicit a well-organized pattern of activation in glomeruli across the surface of the olfactory bulb. However, the mechanisms by which this map is transformed into an odor code by the bulb circuitry remain unclear. Recent physiological studies in bulb slices have identified several synaptic processes that could be involved in sharpening odorant signals. Mitral cells within a single odorant receptor-specific network can be synchronized by dendrodendritic excitatory interactions in a glomerulus, whereas mitral cells in different networks engage in long-lasting lateral inhibition mediated by dendrodendritic synapses with interneurons. The emerging picture is one in which groups of mitral cells use a unique set of mechanisms to accomplish computational functions similar to those performed by analogous modular structures in other sensory systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0166-2236(03)00228-5DOI Listing

Publication Analysis

Top Keywords

mitral cells
12
olfactory bulb
8
dendritic processing
4
processing olfactory
4
bulb
4
bulb circuits
4
circuits odors
4
odors elicit
4
elicit well-organized
4
well-organized pattern
4

Similar Publications

Percutaneous valve implantation or surgical replacement with mechanical or biological valves are standard therapies for severe valvular heart diseases. Prosthetic valve thrombosis, though rare, is a serious complication, particularly with mechanical prostheses. This study aimed to investigate the predictive value of platelet volume parameters, including mean platelet volume (MPV), platelet distribution width (PDW), and platelet-large cell ratio (P-LCR), for valvular thrombosis risk in patients undergoing valve replacement therapy.

View Article and Find Full Text PDF

BACKGROUND Primary cardiac malignancies are extremely rare, with an incidence of 0.07% on autopsy series. Primary sarcomas represent up to 95% of malignant neoplasms, with myxofibrosarcomas accounting for only 10%.

View Article and Find Full Text PDF

Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs.

Nat Commun

January 2025

Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).

View Article and Find Full Text PDF

Sensory processing abnormalities are a hallmark of autism spectrum disorder (ASD) and are included in its diagnostic criteria. Among these challenges, food neophobia has garnered attention due to its prevalence and potential impact on nutritional intake and health outcomes. This review describes the correlation between novel odor perception and feeding difficulties within the context of ASD.

View Article and Find Full Text PDF

Undifferentiated pleomorphic sarcoma, an exceedingly rare and aggressive primary cardiac tumor arising from mesenchymal stem cells, is associated with poor prognosis and high mortality despite adequate treatment. A 52-year-old female presented with a 2-month history of angina and dyspnea on exertion. Her clinical history included severe acute respiratory syndrome coronavirus 2 myocarditis and iron deficiency anemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!