Coagulation factor Va Glu-96-Asp-111: a chelator-sensitive site involved in function and subunit association.

Biochem J

Research and Development Department, Canadian Blood Services, 1800 Alta Vista Drive, Ottawa, Ontario, Canada K1G 4J5.

Published: January 2004

Coagulation FVa (factor Va) accelerates the essential generation of thrombin by FXa (factor Xa). Although the noncovalent Ca2+-dependent association between the FVa light and heavy subunits (FVaL and FVaH) is required for function, little is known about the specific residues involved. Previous fragmentation studies and homology modelling led us to investigate the contribution of Leu-94-Asp-112. Including prospective divalent cation-binding acidic amino acids, nine conserved residues were individually replaced with Ala in the recombinant B-domainless FVa precursor (DeltaFV). While mutation of Thr-104, Glu-108, Asp-112 or Tyr-100 resulted in only minor changes to FXa-mediated thrombin generation, the functions of E96A (81%), D111A (70%) and D102A (60%) mutants (where the single-letter amino acid code is used) were notably reduced. The mutants targeting neighbouring acidic residues, Asp-79 and Glu-119, had activity comparable with DeltaFV, supporting the specific involvement of select residues. Providing a basis for reduced activity, thrombin treatment of D111A resulted in spontaneous dissociation of subunits. Since FVaH and FVaL derived from E96A or D102A remained associated in the presence of Ca2+, like the wild type, but conversely dissociated rapidly upon chelation, a subtle difference in divalent cation co-ordination is implied. Subunit interactions for all other single-point mutants resembled the wild type. These data, along with corroborating multipoint mutants, reveal Asp-111 as essential for FVa subunit association. Although Glu-96 and Asp-102 can be mutated without gross changes to divalent cation-dependent FVaH-FVaL interactions, they too are required for optimal function. Thus Glu-96-Asp-111 imparts at least two discernible effects on FVa coagulation activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223830PMC
http://dx.doi.org/10.1042/BJ20031205DOI Listing

Publication Analysis

Top Keywords

subunit association
8
wild type
8
fva
5
coagulation factor
4
factor glu-96-asp-111
4
glu-96-asp-111 chelator-sensitive
4
chelator-sensitive site
4
site involved
4
involved function
4
function subunit
4

Similar Publications

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Emergence of a novel group B streptococcus CC61 clade associated with human infections in southern China.

J Infect

January 2025

National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:

Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.

Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.

View Article and Find Full Text PDF

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!