Production of polysaccharides by Silene vulgaris callus culture depending on carbohydrates of the medium.

Biochemistry (Mosc)

Institute of Physiology, Komi Science Center, The Urals Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia.

Published: August 2003

Sources of carbohydrate nutrition such as sucrose, glucose, and galactose, with the exception of arabinose, were shown to influence positively callus growth and polysaccharide (pectin silenan and acidic arabinogalactan) biosynthesis. Galactose was found to cause a stimulatory effect on yield and productivity of arabinogalactan. Low concentrations of sucrose failed to support the cell growth and polysaccharide biosynthesis. Increasing sucrose concentrations led to biomass accumulation but failed to enhance efficiency of the substrate utilization. The optimal medium for the campion cell culture growth was found to be one containing 30 g/liter of sucrose or a mixture of sucrose with glucose (in 15 g/liter). Increasing sucrose concentrations in the medium from 30 to 100 g/liter failed to significantly influence the polysaccharide yields while the polysaccharide productivity per liter of the medium grew due to promotion of culture productivity in biomass. Variations of the carbon sources in the nutrient media were shown to influence insignificantly the biochemical characteristics of arabinogalactan and silenan while an increase in the sucrose concentration to 50-100 g/liter led to a diminution of the galacturonic acid content in silenan and to changes in contents of the neutral monosaccharide residues in silenan and arabinogalactan.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025751015684DOI Listing

Publication Analysis

Top Keywords

sucrose glucose
8
growth polysaccharide
8
increasing sucrose
8
sucrose concentrations
8
sucrose
7
production polysaccharides
4
polysaccharides silene
4
silene vulgaris
4
vulgaris callus
4
callus culture
4

Similar Publications

A vacuolar invertase gene modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato.

Hortic Res

January 2025

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.

Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.

View Article and Find Full Text PDF

Microbes experience dynamic conditions in natural habitats as well as in engineered environments, such as large-scale bioreactors, which exhibit increased mixing times and inhomogeneities. While single perturbations have been studied for several organisms and substrates, the impact of recurring short-term perturbations remains largely unknown. In this study, we investigated the response of Saccharomyces cerevisiae to repetitive gradients of four different sugars: glucose, fructose, sucrose, and maltose.

View Article and Find Full Text PDF

Impact of Comb Cell Diameter on Nectar Evaporation Efficiency in Honey Bees.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

Honey bees transform nectar into honey through a combination of physical and chemical processes, with the physical process primarily involving the evaporation of excess water to concentrate the nectar. However, the factors affecting evaporation efficiency, such as evaporation duration, cell type, and bee species, remain incompletely understood. This study aimed to examine how these factors affect nectar evaporation efficiency during honey production.

View Article and Find Full Text PDF

Low-temperature (LT) stress seriously affects the distribution, seedling survival, and grain yield of maize. At the seedling emergence stage, maize's coleoptile is one of the most sensitive organs in sensing LT signaling and, in general, it can envelop young leaves to protect them from LT damage. In addition, brassinolides (BRs) have been shown to enhance LT tolerance from various species, but the effects of BRs on coleoptiles in maize seedlings under LT stress are unclear.

View Article and Find Full Text PDF

The Effect of Mono- and Di-Saccharides on the Microbiome of Dairy Cow Manure and Its Odor.

Microorganisms

December 2024

Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USA.

In a previous experiment, we showed that the odor of manure slurries could be improved by anaerobic incubation with the sugars glucose, lactose, and sucrose. This improvement was due to reductions in the concentrations of malodorants, including dimethyl disulfide, -cresol, -ethylphenol, indole, and skatole, and a shift to the production of fruity esters, including ethyl butyrate and propyl propanoate. Due to large concentrations of lactic acid produced by the sugar-amended manure slurries, we inferred that lactic acid bacteria were involved in improving the manure slurry odor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!