Mouse blastocyst vitrification compared with the conventional slow-freezing method.

J Med Assoc Thai

Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Published: July 2003

To compare mouse blastocyst survival after cryopreservation with vitrification and the slow-freezing method, one-hundred and forty-eight in vitro mouse blastocysts were randomly frozen by the two methods: vitrification and conventional slow-freezing. After being thawed, the blastocysts were assessed for survival and hatching rate. The survival rates of blastocysts cryopreserved by vitrification and slow-freezing were 68.33 and 65.52 per cent (p = 0.89), whereas hatching rates were 51.22 and 44.74 per cent, respectively (p = 0.64). Therefore, vitrification of blastocyst-stage-embryos may be a useful, economic method for freezing the excess blastocysts in some centers where blastocysts are routinely transferred.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mouse blastocyst
8
conventional slow-freezing
8
slow-freezing method
8
vitrification slow-freezing
8
vitrification
5
blastocysts
5
blastocyst vitrification
4
vitrification compared
4
compared conventional
4
slow-freezing
4

Similar Publications

Comparative proteomic landscapes elucidate human preimplantation development and failure.

Cell

January 2025

Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China. Electronic address:

Understanding mammalian preimplantation development, particularly in humans, at the proteomic level remains limited. Here, we applied our comprehensive solution of ultrasensitive proteomic technology to measure the proteomic profiles of oocytes and early embryos and identified nearly 8,000 proteins in humans and over 6,300 proteins in mice. We observed distinct proteomic dynamics before and around zygotic genome activation (ZGA) between the two species.

View Article and Find Full Text PDF

Cumulus cells and the TNF-alpha signaling facilitate aging of ovine oocytes.

Theriogenology

January 2025

College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China. Electronic address:

Post-maturation oocyte aging (PMOA) is known to significantly impair the developmental potential of oocytes; however, comprehensive studies on ovine PMOA remain limited. In mice, cumulus cells (CCs) accelerate oocyte aging by releasing cytokines, but the roles of CCs and cytokines in PMOA of domestic animals are poorly understood. This study aimed to elucidate the involvement of CCs and tumor necrosis factor (TNF)-α in the PMOA of ovine oocytes.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.

View Article and Find Full Text PDF

mTOR signaling mediates energy metabolic equilibrium in bovine and mouse oocytes during the ovulatory phase†.

Biol Reprod

January 2025

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

The mammalian target of rapamycin (mTOR) signaling pathway is activated by luteinizing hormone in preovulatory follicle. However, its impact on ovulation remains inadequately explored. Utilizing in vivo studies and in vitro fertilization, we demonstrated that the negative effect of inhibition of mTOR signaling by rapamycin on oocyte quality during the ovulatory phase, with a notable decrease in the total cell count of blastocysts, a reduction in gastrula size, and fetal degeneration on the 16th day of gestation while not affecting ovulated oocyte count or granulosa cell luteinization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!