The relationships between smooth muscle calcium and isometric tension generation to spontaneous lymphatic pump activity and its modulation by stretch equivalent from 0 to approximately 6 cmH2O were investigated. Excised preparations of the rat thoracic duct were mounted on a wire myograph and loaded with the calcium-sensitive fluorochrome indo-1. Calcium-dependent fluorescence and isometric force were simultaneously recorded. The thoracic duct segments developed spontaneous rhythmic contractile activity. Each contraction was preceded by an increase in intracellular calcium. When the vessels were normalized and stabilized at a preload equal to 3 cmH2O, the peak generation in tension occurred 0.70 +/- 0.11 s after that of calcium. Incremental stretch enhanced the frequency of the phasic activity and amplitude of isometric force generation but not the basal calcium level or the amplitude of the calcium transient. These findings suggest that stretch enhances lymphatic pump activity by increasing the pacemaker activity and the calcium sensitivity of the contractile apparatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00002.2003 | DOI Listing |
Sci Rep
December 2024
Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.
View Article and Find Full Text PDFSci Rep
December 2024
Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France.
In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFAutoimmun Rev
December 2024
Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. Electronic address:
Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!