Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major.

Mol Biochem Parasitol

Instituto de Medicina Tropical, São Paulo University Medical School, Av. Dr. Enéas Carvalho Aguiar, 470; 4o andar, São Paulo-SP, 05403-900, Brazil.

Published: August 2003

AI Article Synopsis

  • Pentamidine (PEN) is a second-line treatment for leishmaniasis, but its resistance mechanisms are poorly understood.
  • Researchers used a genetic approach to identify loci that could confer resistance to PEN in the parasite Leishmania major, discovering a new gene called pentamidine resistance protein 1 (PRP1).
  • PRP1 is part of the P-glycoprotein/ATP-binding cassette (ABC) transporter family and shows modest resistance to PEN, which may have clinical implications due to the drug's limited effectiveness against leishmaniasis.

Article Abstract

Pentamidine (PEN) is a second-line agent in the treatment of leishmaniasis whose mode of action and resistance is not well understood. Here, we used a genetic strategy to search for loci able to mediate PEN resistance (PENr) when overexpressed in Leishmania major. A shuttle cosmid library containing genomic DNA inserts was transfected into wild-type promastigotes and screened for PEN-resistant transfectants. Two different cosmids identifying the same locus were found, which differed from other known Leishmania drug resistance genes. The PENr gene was mapped by deletion and transposon mutagenesis to an open reading frame (ORF) belonging to the P-glycoprotein (PGP)/MRP ATP-binding cassette (ABC) transporter superfamily that we named pentamidine resistance protein 1 (PRP1). The predicted PRP1 protein encodes 1,807 amino acids with the typical dimeric structure involving 10 transmembrane domains and two nucleotide-binding domains (NBDs). PRP1-mediated PENr could be reversed by verapamil and PRP1 overexpressors showed cross-resistance to trivalent antimony but not to pentavalent antimony (glucantime). Although the degree of PENr was modest (1.7- to 3.7-fold), this may be significant in clinical drug resistance given the marginal efficacy of PEN against Leishmania.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-6851(03)00162-2DOI Listing

Publication Analysis

Top Keywords

abc transporter
8
transporter superfamily
8
pentamidine resistance
8
leishmania major
8
drug resistance
8
resistance
6
functional genetic
4
genetic identification
4
prp1
4
identification prp1
4

Similar Publications

The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells.

Cell Chem Biol

December 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.

View Article and Find Full Text PDF

Major histocompatibility complex class I deficiency results from deleterious biallelic variants in TAP1, TAP2, TAPBP, and B2M genes. Only a few patients with variant-curated TAP1 deficiency (TAP1D) have been reported in the literature and the clinical phenotype has been variable with an emphasis on autoimmune and inflammatory complications. We report TAP1D in a Nepalese girl with a severe clinical phenotype with serious viral infections at a very young age.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

ABC transporter activity is affected by the size of lipid nanodiscs.

FEBS Lett

January 2025

Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, CA, USA.

Lipid nanodiscs have become a widely used approach for studying membrane proteins thanks to several advantages they offer. They have been especially useful for studying ABC transporters, despite the growing concern about the possible restriction of the conformational changes of the transporters due to the small size of the discs. Here, we performed a systematic study to determine the effect of the nanodisc size on the ATPase activity of model ABC transporters from human, plant, and bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • RamA is a crucial regulator in bacteria, enhancing resistance to tetracycline-class antibiotics by activating the operon responsible for multidrug resistance.
  • The deletion of RamA leads to significantly reduced transcription levels of this operon, while restoring RamA reinstates normal function.
  • The study highlights RamA's role in bacterial membrane stability and suggests potential pathways for developing new antimicrobial treatments against resistant strains.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!