Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0266-4356(03)00105-0 | DOI Listing |
J Clin Med
January 2025
Department of Plastic, Aesthetic and Reconstructive Surgery, Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria.
Vascularized bone grafts have been successfully established for complex bone defects. The integration of three-dimensional (3D) simulation and printing technology may aid in more precise surgical planning and intraoperative bone shaping. The purpose of the present study was to describe the implementation and surgical application of this innovative technology for bone reconstruction.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A.
View Article and Find Full Text PDFCureus
December 2024
Department of Radiology, Aichi Medical University, Nagakute, JPN.
Purpose In linac-based stereotactic radiosurgery (SRS) utilizing a multileaf collimator (MLC) for brain metastases (BMs), a volumetric-modulated arc (VMA) technique is indispensable for generating a suitable dose distribution with efficient planning and delivery. However, the optimal calculation grid spacing (GS) and statistical uncertainty (SU) of the Monte Carlo algorithm for VMA optimization have yet to be determined. This planning study aimed to examine the impacts of GS and GU settings on VMA-based SRS planning and to find the optimal combination for templating.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFAesthet Surg J
January 2025
Department of Plastic, Aesthetic and Reconstructive Surgery, Kepler University Hospital, Linz, Austria.
Background: In autologous breast reconstruction accomplishing aesthetically pleasing outcomes represents an integral challenge. 3-dimensional technology may aid in accurate flap shaping and subsequent breast appearance.
Objectives: The aim of this study was to evaluate the applicability of 3-dimensional technology for surgical planning and its influence on outcomes for breast reconstruction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!